Raven Core  3.0.0
P2P Digital Currency
ecmult_gen_impl.h
Go to the documentation of this file.
1 /**********************************************************************
2  * Copyright (c) 2013, 2014, 2015 Pieter Wuille, Gregory Maxwell *
3  * Distributed under the MIT software license, see the accompanying *
4  * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
5  **********************************************************************/
6 
7 #ifndef SECP256K1_ECMULT_GEN_IMPL_H
8 #define SECP256K1_ECMULT_GEN_IMPL_H
9 
10 #include "scalar.h"
11 #include "group.h"
12 #include "ecmult_gen.h"
13 #include "hash_impl.h"
14 #ifdef USE_ECMULT_STATIC_PRECOMPUTATION
15 #include "ecmult_static_context.h"
16 #endif
17 static void secp256k1_ecmult_gen_context_init(secp256k1_ecmult_gen_context *ctx) {
18  ctx->prec = NULL;
19 }
20 
21 static void secp256k1_ecmult_gen_context_build(secp256k1_ecmult_gen_context *ctx, const secp256k1_callback* cb) {
22 #ifndef USE_ECMULT_STATIC_PRECOMPUTATION
23  secp256k1_ge prec[1024];
24  secp256k1_gej gj;
25  secp256k1_gej nums_gej;
26  int i, j;
27 #endif
28 
29  if (ctx->prec != NULL) {
30  return;
31  }
32 #ifndef USE_ECMULT_STATIC_PRECOMPUTATION
33  ctx->prec = (secp256k1_ge_storage (*)[64][16])checked_malloc(cb, sizeof(*ctx->prec));
34 
35  /* get the generator */
36  secp256k1_gej_set_ge(&gj, &secp256k1_ge_const_g);
37 
38  /* Construct a group element with no known corresponding scalar (nothing up my sleeve). */
39  {
40  static const unsigned char nums_b32[33] = "The scalar for this x is unknown";
41  secp256k1_fe nums_x;
42  secp256k1_ge nums_ge;
43  int r;
44  r = secp256k1_fe_set_b32(&nums_x, nums_b32);
45  (void)r;
46  VERIFY_CHECK(r);
47  r = secp256k1_ge_set_xo_var(&nums_ge, &nums_x, 0);
48  (void)r;
49  VERIFY_CHECK(r);
50  secp256k1_gej_set_ge(&nums_gej, &nums_ge);
51  /* Add G to make the bits in x uniformly distributed. */
52  secp256k1_gej_add_ge_var(&nums_gej, &nums_gej, &secp256k1_ge_const_g, NULL);
53  }
54 
55  /* compute prec. */
56  {
57  secp256k1_gej precj[1024]; /* Jacobian versions of prec. */
58  secp256k1_gej gbase;
59  secp256k1_gej numsbase;
60  gbase = gj; /* 16^j * G */
61  numsbase = nums_gej; /* 2^j * nums. */
62  for (j = 0; j < 64; j++) {
63  /* Set precj[j*16 .. j*16+15] to (numsbase, numsbase + gbase, ..., numsbase + 15*gbase). */
64  precj[j*16] = numsbase;
65  for (i = 1; i < 16; i++) {
66  secp256k1_gej_add_var(&precj[j*16 + i], &precj[j*16 + i - 1], &gbase, NULL);
67  }
68  /* Multiply gbase by 16. */
69  for (i = 0; i < 4; i++) {
70  secp256k1_gej_double_var(&gbase, &gbase, NULL);
71  }
72  /* Multiply numbase by 2. */
73  secp256k1_gej_double_var(&numsbase, &numsbase, NULL);
74  if (j == 62) {
75  /* In the last iteration, numsbase is (1 - 2^j) * nums instead. */
76  secp256k1_gej_neg(&numsbase, &numsbase);
77  secp256k1_gej_add_var(&numsbase, &numsbase, &nums_gej, NULL);
78  }
79  }
80  secp256k1_ge_set_all_gej_var(prec, precj, 1024, cb);
81  }
82  for (j = 0; j < 64; j++) {
83  for (i = 0; i < 16; i++) {
84  secp256k1_ge_to_storage(&(*ctx->prec)[j][i], &prec[j*16 + i]);
85  }
86  }
87 #else
88  (void)cb;
89  ctx->prec = (secp256k1_ge_storage (*)[64][16])secp256k1_ecmult_static_context;
90 #endif
91  secp256k1_ecmult_gen_blind(ctx, NULL);
92 }
93 
94 static int secp256k1_ecmult_gen_context_is_built(const secp256k1_ecmult_gen_context* ctx) {
95  return ctx->prec != NULL;
96 }
97 
98 static void secp256k1_ecmult_gen_context_clone(secp256k1_ecmult_gen_context *dst,
99  const secp256k1_ecmult_gen_context *src, const secp256k1_callback* cb) {
100  if (src->prec == NULL) {
101  dst->prec = NULL;
102  } else {
103 #ifndef USE_ECMULT_STATIC_PRECOMPUTATION
104  dst->prec = (secp256k1_ge_storage (*)[64][16])checked_malloc(cb, sizeof(*dst->prec));
105  memcpy(dst->prec, src->prec, sizeof(*dst->prec));
106 #else
107  (void)cb;
108  dst->prec = src->prec;
109 #endif
110  dst->initial = src->initial;
111  dst->blind = src->blind;
112  }
113 }
114 
115 static void secp256k1_ecmult_gen_context_clear(secp256k1_ecmult_gen_context *ctx) {
116 #ifndef USE_ECMULT_STATIC_PRECOMPUTATION
117  free(ctx->prec);
118 #endif
119  secp256k1_scalar_clear(&ctx->blind);
120  secp256k1_gej_clear(&ctx->initial);
121  ctx->prec = NULL;
122 }
123 
124 static void secp256k1_ecmult_gen(const secp256k1_ecmult_gen_context *ctx, secp256k1_gej *r, const secp256k1_scalar *gn) {
125  secp256k1_ge add;
127  secp256k1_scalar gnb;
128  int bits;
129  int i, j;
130  memset(&adds, 0, sizeof(adds));
131  *r = ctx->initial;
132  /* Blind scalar/point multiplication by computing (n-b)G + bG instead of nG. */
133  secp256k1_scalar_add(&gnb, gn, &ctx->blind);
134  add.infinity = 0;
135  for (j = 0; j < 64; j++) {
136  bits = secp256k1_scalar_get_bits(&gnb, j * 4, 4);
137  for (i = 0; i < 16; i++) {
148  secp256k1_ge_storage_cmov(&adds, &(*ctx->prec)[j][i], i == bits);
149  }
150  secp256k1_ge_from_storage(&add, &adds);
151  secp256k1_gej_add_ge(r, r, &add);
152  }
153  bits = 0;
154  secp256k1_ge_clear(&add);
155  secp256k1_scalar_clear(&gnb);
156 }
157 
158 /* Setup blinding values for secp256k1_ecmult_gen. */
159 static void secp256k1_ecmult_gen_blind(secp256k1_ecmult_gen_context *ctx, const unsigned char *seed32) {
161  secp256k1_gej gb;
162  secp256k1_fe s;
163  unsigned char nonce32[32];
165  int retry;
166  unsigned char keydata[64] = {0};
167  if (seed32 == NULL) {
168  /* When seed is NULL, reset the initial point and blinding value. */
169  secp256k1_gej_set_ge(&ctx->initial, &secp256k1_ge_const_g);
170  secp256k1_gej_neg(&ctx->initial, &ctx->initial);
171  secp256k1_scalar_set_int(&ctx->blind, 1);
172  }
173  /* The prior blinding value (if not reset) is chained forward by including it in the hash. */
174  secp256k1_scalar_get_b32(nonce32, &ctx->blind);
179  memcpy(keydata, nonce32, 32);
180  if (seed32 != NULL) {
181  memcpy(keydata + 32, seed32, 32);
182  }
183  secp256k1_rfc6979_hmac_sha256_initialize(&rng, keydata, seed32 ? 64 : 32);
184  memset(keydata, 0, sizeof(keydata));
185  /* Retry for out of range results to achieve uniformity. */
186  do {
187  secp256k1_rfc6979_hmac_sha256_generate(&rng, nonce32, 32);
188  retry = !secp256k1_fe_set_b32(&s, nonce32);
189  retry |= secp256k1_fe_is_zero(&s);
190  } while (retry); /* This branch true is cryptographically unreachable. Requires sha256_hmac output > Fp. */
191  /* Randomize the projection to defend against multiplier sidechannels. */
192  secp256k1_gej_rescale(&ctx->initial, &s);
193  secp256k1_fe_clear(&s);
194  do {
195  secp256k1_rfc6979_hmac_sha256_generate(&rng, nonce32, 32);
196  secp256k1_scalar_set_b32(&b, nonce32, &retry);
197  /* A blinding value of 0 works, but would undermine the projection hardening. */
198  retry |= secp256k1_scalar_is_zero(&b);
199  } while (retry); /* This branch true is cryptographically unreachable. Requires sha256_hmac output > order. */
200  secp256k1_rfc6979_hmac_sha256_finalize(&rng);
201  memset(nonce32, 0, 32);
202  secp256k1_ecmult_gen(ctx, &gb, &b);
203  secp256k1_scalar_negate(&b, &b);
204  ctx->blind = b;
205  ctx->initial = gb;
206  secp256k1_scalar_clear(&b);
207  secp256k1_gej_clear(&gb);
208 }
209 
210 #endif /* SECP256K1_ECMULT_GEN_IMPL_H */
#define VERIFY_CHECK(cond)
Definition: util.h:67
A group element of the secp256k1 curve, in jacobian coordinates.
Definition: group.h:24
secp256k1_scalar blind
Definition: ecmult_gen.h:27
A group element of the secp256k1 curve, in affine coordinates.
Definition: group.h:14
A scalar modulo the group order of the secp256k1 curve.
Definition: scalar_4x64.h:13
int infinity
Definition: group.h:17
void * memcpy(void *a, const void *b, size_t c)
secp256k1_ge_storage(* prec)[64][16]
Definition: ecmult_gen.h:26