Raven Core  3.0.0
P2P Digital Currency
ecmult_impl.h
Go to the documentation of this file.
1 /**********************************************************************
2  * Copyright (c) 2013, 2014 Pieter Wuille *
3  * Distributed under the MIT software license, see the accompanying *
4  * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
5  **********************************************************************/
6 
7 #ifndef SECP256K1_ECMULT_IMPL_H
8 #define SECP256K1_ECMULT_IMPL_H
9 
10 #include <string.h>
11 
12 #include "group.h"
13 #include "scalar.h"
14 #include "ecmult.h"
15 
16 #if defined(EXHAUSTIVE_TEST_ORDER)
17 /* We need to lower these values for exhaustive tests because
18  * the tables cannot have infinities in them (this breaks the
19  * affine-isomorphism stuff which tracks z-ratios) */
20 # if EXHAUSTIVE_TEST_ORDER > 128
21 # define WINDOW_A 5
22 # define WINDOW_G 8
23 # elif EXHAUSTIVE_TEST_ORDER > 8
24 # define WINDOW_A 4
25 # define WINDOW_G 4
26 # else
27 # define WINDOW_A 2
28 # define WINDOW_G 2
29 # endif
30 #else
31 /* optimal for 128-bit and 256-bit exponents. */
32 #define WINDOW_A 5
33 
35 #ifdef USE_ENDOMORPHISM
36 
37 #define WINDOW_G 15
38 #else
39 
40 #define WINDOW_G 16
41 #endif
42 #endif
43 
45 #define ECMULT_TABLE_SIZE(w) (1 << ((w)-2))
46 
52 static void secp256k1_ecmult_odd_multiples_table(int n, secp256k1_gej *prej, secp256k1_fe *zr, const secp256k1_gej *a) {
53  secp256k1_gej d;
54  secp256k1_ge a_ge, d_ge;
55  int i;
56 
58 
59  secp256k1_gej_double_var(&d, a, NULL);
60 
61  /*
62  * Perform the additions on an isomorphism where 'd' is affine: drop the z coordinate
63  * of 'd', and scale the 1P starting value's x/y coordinates without changing its z.
64  */
65  d_ge.x = d.x;
66  d_ge.y = d.y;
67  d_ge.infinity = 0;
68 
69  secp256k1_ge_set_gej_zinv(&a_ge, a, &d.z);
70  prej[0].x = a_ge.x;
71  prej[0].y = a_ge.y;
72  prej[0].z = a->z;
73  prej[0].infinity = 0;
74 
75  zr[0] = d.z;
76  for (i = 1; i < n; i++) {
77  secp256k1_gej_add_ge_var(&prej[i], &prej[i-1], &d_ge, &zr[i]);
78  }
79 
80  /*
81  * Each point in 'prej' has a z coordinate too small by a factor of 'd.z'. Only
82  * the final point's z coordinate is actually used though, so just update that.
83  */
84  secp256k1_fe_mul(&prej[n-1].z, &prej[n-1].z, &d.z);
85 }
86 
102 static void secp256k1_ecmult_odd_multiples_table_globalz_windowa(secp256k1_ge *pre, secp256k1_fe *globalz, const secp256k1_gej *a) {
105 
106  /* Compute the odd multiples in Jacobian form. */
107  secp256k1_ecmult_odd_multiples_table(ECMULT_TABLE_SIZE(WINDOW_A), prej, zr, a);
108  /* Bring them to the same Z denominator. */
109  secp256k1_ge_globalz_set_table_gej(ECMULT_TABLE_SIZE(WINDOW_A), pre, globalz, prej, zr);
110 }
111 
112 static void secp256k1_ecmult_odd_multiples_table_storage_var(int n, secp256k1_ge_storage *pre, const secp256k1_gej *a, const secp256k1_callback *cb) {
113  secp256k1_gej *prej = (secp256k1_gej*)checked_malloc(cb, sizeof(secp256k1_gej) * n);
114  secp256k1_ge *prea = (secp256k1_ge*)checked_malloc(cb, sizeof(secp256k1_ge) * n);
115  secp256k1_fe *zr = (secp256k1_fe*)checked_malloc(cb, sizeof(secp256k1_fe) * n);
116  int i;
117 
118  /* Compute the odd multiples in Jacobian form. */
119  secp256k1_ecmult_odd_multiples_table(n, prej, zr, a);
120  /* Convert them in batch to affine coordinates. */
121  secp256k1_ge_set_table_gej_var(prea, prej, zr, n);
122  /* Convert them to compact storage form. */
123  for (i = 0; i < n; i++) {
124  secp256k1_ge_to_storage(&pre[i], &prea[i]);
125  }
126 
127  free(prea);
128  free(prej);
129  free(zr);
130 }
131 
134 #define ECMULT_TABLE_GET_GE(r,pre,n,w) do { \
135  VERIFY_CHECK(((n) & 1) == 1); \
136  VERIFY_CHECK((n) >= -((1 << ((w)-1)) - 1)); \
137  VERIFY_CHECK((n) <= ((1 << ((w)-1)) - 1)); \
138  if ((n) > 0) { \
139  *(r) = (pre)[((n)-1)/2]; \
140  } else { \
141  secp256k1_ge_neg((r), &(pre)[(-(n)-1)/2]); \
142  } \
143 } while(0)
144 
145 #define ECMULT_TABLE_GET_GE_STORAGE(r,pre,n,w) do { \
146  VERIFY_CHECK(((n) & 1) == 1); \
147  VERIFY_CHECK((n) >= -((1 << ((w)-1)) - 1)); \
148  VERIFY_CHECK((n) <= ((1 << ((w)-1)) - 1)); \
149  if ((n) > 0) { \
150  secp256k1_ge_from_storage((r), &(pre)[((n)-1)/2]); \
151  } else { \
152  secp256k1_ge_from_storage((r), &(pre)[(-(n)-1)/2]); \
153  secp256k1_ge_neg((r), (r)); \
154  } \
155 } while(0)
156 
157 static void secp256k1_ecmult_context_init(secp256k1_ecmult_context *ctx) {
158  ctx->pre_g = NULL;
159 #ifdef USE_ENDOMORPHISM
160  ctx->pre_g_128 = NULL;
161 #endif
162 }
163 
164 static void secp256k1_ecmult_context_build(secp256k1_ecmult_context *ctx, const secp256k1_callback *cb) {
165  secp256k1_gej gj;
166 
167  if (ctx->pre_g != NULL) {
168  return;
169  }
170 
171  /* get the generator */
172  secp256k1_gej_set_ge(&gj, &secp256k1_ge_const_g);
173 
174  ctx->pre_g = (secp256k1_ge_storage (*)[])checked_malloc(cb, sizeof((*ctx->pre_g)[0]) * ECMULT_TABLE_SIZE(WINDOW_G));
175 
176  /* precompute the tables with odd multiples */
177  secp256k1_ecmult_odd_multiples_table_storage_var(ECMULT_TABLE_SIZE(WINDOW_G), *ctx->pre_g, &gj, cb);
178 
179 #ifdef USE_ENDOMORPHISM
180  {
181  secp256k1_gej g_128j;
182  int i;
183 
184  ctx->pre_g_128 = (secp256k1_ge_storage (*)[])checked_malloc(cb, sizeof((*ctx->pre_g_128)[0]) * ECMULT_TABLE_SIZE(WINDOW_G));
185 
186  /* calculate 2^128*generator */
187  g_128j = gj;
188  for (i = 0; i < 128; i++) {
189  secp256k1_gej_double_var(&g_128j, &g_128j, NULL);
190  }
191  secp256k1_ecmult_odd_multiples_table_storage_var(ECMULT_TABLE_SIZE(WINDOW_G), *ctx->pre_g_128, &g_128j, cb);
192  }
193 #endif
194 }
195 
196 static void secp256k1_ecmult_context_clone(secp256k1_ecmult_context *dst,
197  const secp256k1_ecmult_context *src, const secp256k1_callback *cb) {
198  if (src->pre_g == NULL) {
199  dst->pre_g = NULL;
200  } else {
201  size_t size = sizeof((*dst->pre_g)[0]) * ECMULT_TABLE_SIZE(WINDOW_G);
202  dst->pre_g = (secp256k1_ge_storage (*)[])checked_malloc(cb, size);
203  memcpy(dst->pre_g, src->pre_g, size);
204  }
205 #ifdef USE_ENDOMORPHISM
206  if (src->pre_g_128 == NULL) {
207  dst->pre_g_128 = NULL;
208  } else {
209  size_t size = sizeof((*dst->pre_g_128)[0]) * ECMULT_TABLE_SIZE(WINDOW_G);
210  dst->pre_g_128 = (secp256k1_ge_storage (*)[])checked_malloc(cb, size);
211  memcpy(dst->pre_g_128, src->pre_g_128, size);
212  }
213 #endif
214 }
215 
216 static int secp256k1_ecmult_context_is_built(const secp256k1_ecmult_context *ctx) {
217  return ctx->pre_g != NULL;
218 }
219 
220 static void secp256k1_ecmult_context_clear(secp256k1_ecmult_context *ctx) {
221  free(ctx->pre_g);
222 #ifdef USE_ENDOMORPHISM
223  free(ctx->pre_g_128);
224 #endif
225  secp256k1_ecmult_context_init(ctx);
226 }
227 
235 static int secp256k1_ecmult_wnaf(int *wnaf, int len, const secp256k1_scalar *a, int w) {
236  secp256k1_scalar s = *a;
237  int last_set_bit = -1;
238  int bit = 0;
239  int sign = 1;
240  int carry = 0;
241 
242  VERIFY_CHECK(wnaf != NULL);
243  VERIFY_CHECK(0 <= len && len <= 256);
244  VERIFY_CHECK(a != NULL);
245  VERIFY_CHECK(2 <= w && w <= 31);
246 
247  memset(wnaf, 0, len * sizeof(wnaf[0]));
248 
249  if (secp256k1_scalar_get_bits(&s, 255, 1)) {
250  secp256k1_scalar_negate(&s, &s);
251  sign = -1;
252  }
253 
254  while (bit < len) {
255  int now;
256  int word;
257  if (secp256k1_scalar_get_bits(&s, bit, 1) == (unsigned int)carry) {
258  bit++;
259  continue;
260  }
261 
262  now = w;
263  if (now > len - bit) {
264  now = len - bit;
265  }
266 
267  word = secp256k1_scalar_get_bits_var(&s, bit, now) + carry;
268 
269  carry = (word >> (w-1)) & 1;
270  word -= carry << w;
271 
272  wnaf[bit] = sign * word;
273  last_set_bit = bit;
274 
275  bit += now;
276  }
277 #ifdef VERIFY
278  CHECK(carry == 0);
279  while (bit < 256) {
280  CHECK(secp256k1_scalar_get_bits(&s, bit++, 1) == 0);
281  }
282 #endif
283  return last_set_bit + 1;
284 }
285 
286 static void secp256k1_ecmult(const secp256k1_ecmult_context *ctx, secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_scalar *na, const secp256k1_scalar *ng) {
288  secp256k1_ge tmpa;
289  secp256k1_fe Z;
290 #ifdef USE_ENDOMORPHISM
292  secp256k1_scalar na_1, na_lam;
293  /* Splitted G factors. */
294  secp256k1_scalar ng_1, ng_128;
295  int wnaf_na_1[130];
296  int wnaf_na_lam[130];
297  int bits_na_1;
298  int bits_na_lam;
299  int wnaf_ng_1[129];
300  int bits_ng_1;
301  int wnaf_ng_128[129];
302  int bits_ng_128;
303 #else
304  int wnaf_na[256];
305  int bits_na;
306  int wnaf_ng[256];
307  int bits_ng;
308 #endif
309  int i;
310  int bits;
311 
312 #ifdef USE_ENDOMORPHISM
313  /* split na into na_1 and na_lam (where na = na_1 + na_lam*lambda, and na_1 and na_lam are ~128 bit) */
314  secp256k1_scalar_split_lambda(&na_1, &na_lam, na);
315 
316  /* build wnaf representation for na_1 and na_lam. */
317  bits_na_1 = secp256k1_ecmult_wnaf(wnaf_na_1, 130, &na_1, WINDOW_A);
318  bits_na_lam = secp256k1_ecmult_wnaf(wnaf_na_lam, 130, &na_lam, WINDOW_A);
319  VERIFY_CHECK(bits_na_1 <= 130);
320  VERIFY_CHECK(bits_na_lam <= 130);
321  bits = bits_na_1;
322  if (bits_na_lam > bits) {
323  bits = bits_na_lam;
324  }
325 #else
326  /* build wnaf representation for na. */
327  bits_na = secp256k1_ecmult_wnaf(wnaf_na, 256, na, WINDOW_A);
328  bits = bits_na;
329 #endif
330 
331  /* Calculate odd multiples of a.
332  * All multiples are brought to the same Z 'denominator', which is stored
333  * in Z. Due to secp256k1' isomorphism we can do all operations pretending
334  * that the Z coordinate was 1, use affine addition formulae, and correct
335  * the Z coordinate of the result once at the end.
336  * The exception is the precomputed G table points, which are actually
337  * affine. Compared to the base used for other points, they have a Z ratio
338  * of 1/Z, so we can use secp256k1_gej_add_zinv_var, which uses the same
339  * isomorphism to efficiently add with a known Z inverse.
340  */
341  secp256k1_ecmult_odd_multiples_table_globalz_windowa(pre_a, &Z, a);
342 
343 #ifdef USE_ENDOMORPHISM
344  for (i = 0; i < ECMULT_TABLE_SIZE(WINDOW_A); i++) {
345  secp256k1_ge_mul_lambda(&pre_a_lam[i], &pre_a[i]);
346  }
347 
348  /* split ng into ng_1 and ng_128 (where gn = gn_1 + gn_128*2^128, and gn_1 and gn_128 are ~128 bit) */
349  secp256k1_scalar_split_128(&ng_1, &ng_128, ng);
350 
351  /* Build wnaf representation for ng_1 and ng_128 */
352  bits_ng_1 = secp256k1_ecmult_wnaf(wnaf_ng_1, 129, &ng_1, WINDOW_G);
353  bits_ng_128 = secp256k1_ecmult_wnaf(wnaf_ng_128, 129, &ng_128, WINDOW_G);
354  if (bits_ng_1 > bits) {
355  bits = bits_ng_1;
356  }
357  if (bits_ng_128 > bits) {
358  bits = bits_ng_128;
359  }
360 #else
361  bits_ng = secp256k1_ecmult_wnaf(wnaf_ng, 256, ng, WINDOW_G);
362  if (bits_ng > bits) {
363  bits = bits_ng;
364  }
365 #endif
366 
367  secp256k1_gej_set_infinity(r);
368 
369  for (i = bits - 1; i >= 0; i--) {
370  int n;
371  secp256k1_gej_double_var(r, r, NULL);
372 #ifdef USE_ENDOMORPHISM
373  if (i < bits_na_1 && (n = wnaf_na_1[i])) {
374  ECMULT_TABLE_GET_GE(&tmpa, pre_a, n, WINDOW_A);
375  secp256k1_gej_add_ge_var(r, r, &tmpa, NULL);
376  }
377  if (i < bits_na_lam && (n = wnaf_na_lam[i])) {
378  ECMULT_TABLE_GET_GE(&tmpa, pre_a_lam, n, WINDOW_A);
379  secp256k1_gej_add_ge_var(r, r, &tmpa, NULL);
380  }
381  if (i < bits_ng_1 && (n = wnaf_ng_1[i])) {
382  ECMULT_TABLE_GET_GE_STORAGE(&tmpa, *ctx->pre_g, n, WINDOW_G);
383  secp256k1_gej_add_zinv_var(r, r, &tmpa, &Z);
384  }
385  if (i < bits_ng_128 && (n = wnaf_ng_128[i])) {
386  ECMULT_TABLE_GET_GE_STORAGE(&tmpa, *ctx->pre_g_128, n, WINDOW_G);
387  secp256k1_gej_add_zinv_var(r, r, &tmpa, &Z);
388  }
389 #else
390  if (i < bits_na && (n = wnaf_na[i])) {
391  ECMULT_TABLE_GET_GE(&tmpa, pre_a, n, WINDOW_A);
392  secp256k1_gej_add_ge_var(r, r, &tmpa, NULL);
393  }
394  if (i < bits_ng && (n = wnaf_ng[i])) {
395  ECMULT_TABLE_GET_GE_STORAGE(&tmpa, *ctx->pre_g, n, WINDOW_G);
396  secp256k1_gej_add_zinv_var(r, r, &tmpa, &Z);
397  }
398 #endif
399  }
400 
401  if (!r->infinity) {
402  secp256k1_fe_mul(&r->z, &r->z, &Z);
403  }
404 }
405 
406 #endif /* SECP256K1_ECMULT_IMPL_H */
#define VERIFY_CHECK(cond)
Definition: util.h:67
secp256k1_fe x
Definition: group.h:25
#define ECMULT_TABLE_GET_GE_STORAGE(r, pre, n, w)
Definition: ecmult_impl.h:145
#define ECMULT_TABLE_SIZE(w)
The number of entries a table with precomputed multiples needs to have.
Definition: ecmult_impl.h:45
A group element of the secp256k1 curve, in jacobian coordinates.
Definition: group.h:24
#define WINDOW_G
larger numbers may result in slightly better performance, at the cost of exponentially larger precomp...
Definition: ecmult_impl.h:40
int infinity
Definition: group.h:28
A group element of the secp256k1 curve, in affine coordinates.
Definition: group.h:14
secp256k1_fe x
Definition: group.h:15
#define CHECK(cond)
Definition: util.h:52
A scalar modulo the group order of the secp256k1 curve.
Definition: scalar_4x64.h:13
int infinity
Definition: group.h:17
#define WINDOW_A
Definition: ecmult_impl.h:32
#define ECMULT_TABLE_GET_GE(r, pre, n, w)
The following two macro retrieves a particular odd multiple from a table of precomputed multiples...
Definition: ecmult_impl.h:134
secp256k1_fe z
Definition: group.h:27
void * memcpy(void *a, const void *b, size_t c)
secp256k1_fe y
Definition: group.h:26
secp256k1_fe y
Definition: group.h:16
secp256k1_ge_storage(* pre_g)[]
Definition: ecmult.h:15