Raven Core  3.0.0
P2P Digital Currency
group_impl.h
Go to the documentation of this file.
1 /**********************************************************************
2  * Copyright (c) 2013, 2014 Pieter Wuille *
3  * Distributed under the MIT software license, see the accompanying *
4  * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
5  **********************************************************************/
6 
7 #ifndef SECP256K1_GROUP_IMPL_H
8 #define SECP256K1_GROUP_IMPL_H
9 
10 #include "num.h"
11 #include "field.h"
12 #include "group.h"
13 
14 /* These points can be generated in sage as follows:
15  *
16  * 0. Setup a worksheet with the following parameters.
17  * b = 4 # whatever CURVE_B will be set to
18  * F = FiniteField (0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F)
19  * C = EllipticCurve ([F (0), F (b)])
20  *
21  * 1. Determine all the small orders available to you. (If there are
22  * no satisfactory ones, go back and change b.)
23  * print C.order().factor(limit=1000)
24  *
25  * 2. Choose an order as one of the prime factors listed in the above step.
26  * (You can also multiply some to get a composite order, though the
27  * tests will crash trying to invert scalars during signing.) We take a
28  * random point and scale it to drop its order to the desired value.
29  * There is some probability this won't work; just try again.
30  * order = 199
31  * P = C.random_point()
32  * P = (int(P.order()) / int(order)) * P
33  * assert(P.order() == order)
34  *
35  * 3. Print the values. You'll need to use a vim macro or something to
36  * split the hex output into 4-byte chunks.
37  * print "%x %x" % P.xy()
38  */
39 #if defined(EXHAUSTIVE_TEST_ORDER)
40 # if EXHAUSTIVE_TEST_ORDER == 199
41 const secp256k1_ge secp256k1_ge_const_g = SECP256K1_GE_CONST(
42  0xFA7CC9A7, 0x0737F2DB, 0xA749DD39, 0x2B4FB069,
43  0x3B017A7D, 0xA808C2F1, 0xFB12940C, 0x9EA66C18,
44  0x78AC123A, 0x5ED8AEF3, 0x8732BC91, 0x1F3A2868,
45  0x48DF246C, 0x808DAE72, 0xCFE52572, 0x7F0501ED
46 );
47 
48 const int CURVE_B = 4;
49 # elif EXHAUSTIVE_TEST_ORDER == 13
50 const secp256k1_ge secp256k1_ge_const_g = SECP256K1_GE_CONST(
51  0xedc60018, 0xa51a786b, 0x2ea91f4d, 0x4c9416c0,
52  0x9de54c3b, 0xa1316554, 0x6cf4345c, 0x7277ef15,
53  0x54cb1b6b, 0xdc8c1273, 0x087844ea, 0x43f4603e,
54  0x0eaf9a43, 0xf6effe55, 0x939f806d, 0x37adf8ac
55 );
56 const int CURVE_B = 2;
57 # else
58 # error No known generator for the specified exhaustive test group order.
59 # endif
60 #else
61 
64 static const secp256k1_ge secp256k1_ge_const_g = SECP256K1_GE_CONST(
65  0x79BE667EUL, 0xF9DCBBACUL, 0x55A06295UL, 0xCE870B07UL,
66  0x029BFCDBUL, 0x2DCE28D9UL, 0x59F2815BUL, 0x16F81798UL,
67  0x483ADA77UL, 0x26A3C465UL, 0x5DA4FBFCUL, 0x0E1108A8UL,
68  0xFD17B448UL, 0xA6855419UL, 0x9C47D08FUL, 0xFB10D4B8UL
69 );
70 
71 const int CURVE_B = 7;
72 #endif
73 
74 static void secp256k1_ge_set_gej_zinv(secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_fe *zi) {
75  secp256k1_fe zi2;
76  secp256k1_fe zi3;
77  secp256k1_fe_sqr(&zi2, zi);
78  secp256k1_fe_mul(&zi3, &zi2, zi);
79  secp256k1_fe_mul(&r->x, &a->x, &zi2);
80  secp256k1_fe_mul(&r->y, &a->y, &zi3);
81  r->infinity = a->infinity;
82 }
83 
84 static void secp256k1_ge_set_xy(secp256k1_ge *r, const secp256k1_fe *x, const secp256k1_fe *y) {
85  r->infinity = 0;
86  r->x = *x;
87  r->y = *y;
88 }
89 
90 static int secp256k1_ge_is_infinity(const secp256k1_ge *a) {
91  return a->infinity;
92 }
93 
94 static void secp256k1_ge_neg(secp256k1_ge *r, const secp256k1_ge *a) {
95  *r = *a;
96  secp256k1_fe_normalize_weak(&r->y);
97  secp256k1_fe_negate(&r->y, &r->y, 1);
98 }
99 
100 static void secp256k1_ge_set_gej(secp256k1_ge *r, secp256k1_gej *a) {
101  secp256k1_fe z2, z3;
102  r->infinity = a->infinity;
103  secp256k1_fe_inv(&a->z, &a->z);
104  secp256k1_fe_sqr(&z2, &a->z);
105  secp256k1_fe_mul(&z3, &a->z, &z2);
106  secp256k1_fe_mul(&a->x, &a->x, &z2);
107  secp256k1_fe_mul(&a->y, &a->y, &z3);
108  secp256k1_fe_set_int(&a->z, 1);
109  r->x = a->x;
110  r->y = a->y;
111 }
112 
113 static void secp256k1_ge_set_gej_var(secp256k1_ge *r, secp256k1_gej *a) {
114  secp256k1_fe z2, z3;
115  r->infinity = a->infinity;
116  if (a->infinity) {
117  return;
118  }
119  secp256k1_fe_inv_var(&a->z, &a->z);
120  secp256k1_fe_sqr(&z2, &a->z);
121  secp256k1_fe_mul(&z3, &a->z, &z2);
122  secp256k1_fe_mul(&a->x, &a->x, &z2);
123  secp256k1_fe_mul(&a->y, &a->y, &z3);
124  secp256k1_fe_set_int(&a->z, 1);
125  r->x = a->x;
126  r->y = a->y;
127 }
128 
129 static void secp256k1_ge_set_all_gej_var(secp256k1_ge *r, const secp256k1_gej *a, size_t len, const secp256k1_callback *cb) {
130  secp256k1_fe *az;
131  secp256k1_fe *azi;
132  size_t i;
133  size_t count = 0;
134  az = (secp256k1_fe *)checked_malloc(cb, sizeof(secp256k1_fe) * len);
135  for (i = 0; i < len; i++) {
136  if (!a[i].infinity) {
137  az[count++] = a[i].z;
138  }
139  }
140 
141  azi = (secp256k1_fe *)checked_malloc(cb, sizeof(secp256k1_fe) * count);
142  secp256k1_fe_inv_all_var(azi, az, count);
143  free(az);
144 
145  count = 0;
146  for (i = 0; i < len; i++) {
147  r[i].infinity = a[i].infinity;
148  if (!a[i].infinity) {
149  secp256k1_ge_set_gej_zinv(&r[i], &a[i], &azi[count++]);
150  }
151  }
152  free(azi);
153 }
154 
155 static void secp256k1_ge_set_table_gej_var(secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_fe *zr, size_t len) {
156  size_t i = len - 1;
157  secp256k1_fe zi;
158 
159  if (len > 0) {
160  /* Compute the inverse of the last z coordinate, and use it to compute the last affine output. */
161  secp256k1_fe_inv(&zi, &a[i].z);
162  secp256k1_ge_set_gej_zinv(&r[i], &a[i], &zi);
163 
164  /* Work out way backwards, using the z-ratios to scale the x/y values. */
165  while (i > 0) {
166  secp256k1_fe_mul(&zi, &zi, &zr[i]);
167  i--;
168  secp256k1_ge_set_gej_zinv(&r[i], &a[i], &zi);
169  }
170  }
171 }
172 
173 static void secp256k1_ge_globalz_set_table_gej(size_t len, secp256k1_ge *r, secp256k1_fe *globalz, const secp256k1_gej *a, const secp256k1_fe *zr) {
174  size_t i = len - 1;
175  secp256k1_fe zs;
176 
177  if (len > 0) {
178  /* The z of the final point gives us the "global Z" for the table. */
179  r[i].x = a[i].x;
180  r[i].y = a[i].y;
181  *globalz = a[i].z;
182  r[i].infinity = 0;
183  zs = zr[i];
184 
185  /* Work our way backwards, using the z-ratios to scale the x/y values. */
186  while (i > 0) {
187  if (i != len - 1) {
188  secp256k1_fe_mul(&zs, &zs, &zr[i]);
189  }
190  i--;
191  secp256k1_ge_set_gej_zinv(&r[i], &a[i], &zs);
192  }
193  }
194 }
195 
196 static void secp256k1_gej_set_infinity(secp256k1_gej *r) {
197  r->infinity = 1;
198  secp256k1_fe_clear(&r->x);
199  secp256k1_fe_clear(&r->y);
200  secp256k1_fe_clear(&r->z);
201 }
202 
203 static void secp256k1_gej_clear(secp256k1_gej *r) {
204  r->infinity = 0;
205  secp256k1_fe_clear(&r->x);
206  secp256k1_fe_clear(&r->y);
207  secp256k1_fe_clear(&r->z);
208 }
209 
210 static void secp256k1_ge_clear(secp256k1_ge *r) {
211  r->infinity = 0;
212  secp256k1_fe_clear(&r->x);
213  secp256k1_fe_clear(&r->y);
214 }
215 
216 static int secp256k1_ge_set_xquad(secp256k1_ge *r, const secp256k1_fe *x) {
217  secp256k1_fe x2, x3, c;
218  r->x = *x;
219  secp256k1_fe_sqr(&x2, x);
220  secp256k1_fe_mul(&x3, x, &x2);
221  r->infinity = 0;
222  secp256k1_fe_set_int(&c, CURVE_B);
223  secp256k1_fe_add(&c, &x3);
224  return secp256k1_fe_sqrt(&r->y, &c);
225 }
226 
227 static int secp256k1_ge_set_xo_var(secp256k1_ge *r, const secp256k1_fe *x, int odd) {
228  if (!secp256k1_ge_set_xquad(r, x)) {
229  return 0;
230  }
231  secp256k1_fe_normalize_var(&r->y);
232  if (secp256k1_fe_is_odd(&r->y) != odd) {
233  secp256k1_fe_negate(&r->y, &r->y, 1);
234  }
235  return 1;
236 
237 }
238 
239 static void secp256k1_gej_set_ge(secp256k1_gej *r, const secp256k1_ge *a) {
240  r->infinity = a->infinity;
241  r->x = a->x;
242  r->y = a->y;
243  secp256k1_fe_set_int(&r->z, 1);
244 }
245 
246 static int secp256k1_gej_eq_x_var(const secp256k1_fe *x, const secp256k1_gej *a) {
247  secp256k1_fe r, r2;
248  VERIFY_CHECK(!a->infinity);
249  secp256k1_fe_sqr(&r, &a->z); secp256k1_fe_mul(&r, &r, x);
250  r2 = a->x; secp256k1_fe_normalize_weak(&r2);
251  return secp256k1_fe_equal_var(&r, &r2);
252 }
253 
254 static void secp256k1_gej_neg(secp256k1_gej *r, const secp256k1_gej *a) {
255  r->infinity = a->infinity;
256  r->x = a->x;
257  r->y = a->y;
258  r->z = a->z;
259  secp256k1_fe_normalize_weak(&r->y);
260  secp256k1_fe_negate(&r->y, &r->y, 1);
261 }
262 
263 static int secp256k1_gej_is_infinity(const secp256k1_gej *a) {
264  return a->infinity;
265 }
266 
267 static int secp256k1_gej_is_valid_var(const secp256k1_gej *a) {
268  secp256k1_fe y2, x3, z2, z6;
269  if (a->infinity) {
270  return 0;
271  }
277  secp256k1_fe_sqr(&y2, &a->y);
278  secp256k1_fe_sqr(&x3, &a->x); secp256k1_fe_mul(&x3, &x3, &a->x);
279  secp256k1_fe_sqr(&z2, &a->z);
280  secp256k1_fe_sqr(&z6, &z2); secp256k1_fe_mul(&z6, &z6, &z2);
281  secp256k1_fe_mul_int(&z6, CURVE_B);
282  secp256k1_fe_add(&x3, &z6);
283  secp256k1_fe_normalize_weak(&x3);
284  return secp256k1_fe_equal_var(&y2, &x3);
285 }
286 
287 static int secp256k1_ge_is_valid_var(const secp256k1_ge *a) {
288  secp256k1_fe y2, x3, c;
289  if (a->infinity) {
290  return 0;
291  }
292  /* y^2 = x^3 + 7 */
293  secp256k1_fe_sqr(&y2, &a->y);
294  secp256k1_fe_sqr(&x3, &a->x); secp256k1_fe_mul(&x3, &x3, &a->x);
295  secp256k1_fe_set_int(&c, CURVE_B);
296  secp256k1_fe_add(&x3, &c);
297  secp256k1_fe_normalize_weak(&x3);
298  return secp256k1_fe_equal_var(&y2, &x3);
299 }
300 
301 static void secp256k1_gej_double_var(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr) {
302  /* Operations: 3 mul, 4 sqr, 0 normalize, 12 mul_int/add/negate.
303  *
304  * Note that there is an implementation described at
305  * https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l
306  * which trades a multiply for a square, but in practice this is actually slower,
307  * mainly because it requires more normalizations.
308  */
309  secp256k1_fe t1,t2,t3,t4;
320  r->infinity = a->infinity;
321  if (r->infinity) {
322  if (rzr != NULL) {
323  secp256k1_fe_set_int(rzr, 1);
324  }
325  return;
326  }
327 
328  if (rzr != NULL) {
329  *rzr = a->y;
330  secp256k1_fe_normalize_weak(rzr);
331  secp256k1_fe_mul_int(rzr, 2);
332  }
333 
334  secp256k1_fe_mul(&r->z, &a->z, &a->y);
335  secp256k1_fe_mul_int(&r->z, 2); /* Z' = 2*Y*Z (2) */
336  secp256k1_fe_sqr(&t1, &a->x);
337  secp256k1_fe_mul_int(&t1, 3); /* T1 = 3*X^2 (3) */
338  secp256k1_fe_sqr(&t2, &t1); /* T2 = 9*X^4 (1) */
339  secp256k1_fe_sqr(&t3, &a->y);
340  secp256k1_fe_mul_int(&t3, 2); /* T3 = 2*Y^2 (2) */
341  secp256k1_fe_sqr(&t4, &t3);
342  secp256k1_fe_mul_int(&t4, 2); /* T4 = 8*Y^4 (2) */
343  secp256k1_fe_mul(&t3, &t3, &a->x); /* T3 = 2*X*Y^2 (1) */
344  r->x = t3;
345  secp256k1_fe_mul_int(&r->x, 4); /* X' = 8*X*Y^2 (4) */
346  secp256k1_fe_negate(&r->x, &r->x, 4); /* X' = -8*X*Y^2 (5) */
347  secp256k1_fe_add(&r->x, &t2); /* X' = 9*X^4 - 8*X*Y^2 (6) */
348  secp256k1_fe_negate(&t2, &t2, 1); /* T2 = -9*X^4 (2) */
349  secp256k1_fe_mul_int(&t3, 6); /* T3 = 12*X*Y^2 (6) */
350  secp256k1_fe_add(&t3, &t2); /* T3 = 12*X*Y^2 - 9*X^4 (8) */
351  secp256k1_fe_mul(&r->y, &t1, &t3); /* Y' = 36*X^3*Y^2 - 27*X^6 (1) */
352  secp256k1_fe_negate(&t2, &t4, 2); /* T2 = -8*Y^4 (3) */
353  secp256k1_fe_add(&r->y, &t2); /* Y' = 36*X^3*Y^2 - 27*X^6 - 8*Y^4 (4) */
354 }
355 
356 static SECP256K1_INLINE void secp256k1_gej_double_nonzero(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr) {
357  VERIFY_CHECK(!secp256k1_gej_is_infinity(a));
358  secp256k1_gej_double_var(r, a, rzr);
359 }
360 
361 static void secp256k1_gej_add_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_gej *b, secp256k1_fe *rzr) {
362  /* Operations: 12 mul, 4 sqr, 2 normalize, 12 mul_int/add/negate */
363  secp256k1_fe z22, z12, u1, u2, s1, s2, h, i, i2, h2, h3, t;
364 
365  if (a->infinity) {
366  VERIFY_CHECK(rzr == NULL);
367  *r = *b;
368  return;
369  }
370 
371  if (b->infinity) {
372  if (rzr != NULL) {
373  secp256k1_fe_set_int(rzr, 1);
374  }
375  *r = *a;
376  return;
377  }
378 
379  r->infinity = 0;
380  secp256k1_fe_sqr(&z22, &b->z);
381  secp256k1_fe_sqr(&z12, &a->z);
382  secp256k1_fe_mul(&u1, &a->x, &z22);
383  secp256k1_fe_mul(&u2, &b->x, &z12);
384  secp256k1_fe_mul(&s1, &a->y, &z22); secp256k1_fe_mul(&s1, &s1, &b->z);
385  secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &a->z);
386  secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2);
387  secp256k1_fe_negate(&i, &s1, 1); secp256k1_fe_add(&i, &s2);
388  if (secp256k1_fe_normalizes_to_zero_var(&h)) {
389  if (secp256k1_fe_normalizes_to_zero_var(&i)) {
390  secp256k1_gej_double_var(r, a, rzr);
391  } else {
392  if (rzr != NULL) {
393  secp256k1_fe_set_int(rzr, 0);
394  }
395  r->infinity = 1;
396  }
397  return;
398  }
399  secp256k1_fe_sqr(&i2, &i);
400  secp256k1_fe_sqr(&h2, &h);
401  secp256k1_fe_mul(&h3, &h, &h2);
402  secp256k1_fe_mul(&h, &h, &b->z);
403  if (rzr != NULL) {
404  *rzr = h;
405  }
406  secp256k1_fe_mul(&r->z, &a->z, &h);
407  secp256k1_fe_mul(&t, &u1, &h2);
408  r->x = t; secp256k1_fe_mul_int(&r->x, 2); secp256k1_fe_add(&r->x, &h3); secp256k1_fe_negate(&r->x, &r->x, 3); secp256k1_fe_add(&r->x, &i2);
409  secp256k1_fe_negate(&r->y, &r->x, 5); secp256k1_fe_add(&r->y, &t); secp256k1_fe_mul(&r->y, &r->y, &i);
410  secp256k1_fe_mul(&h3, &h3, &s1); secp256k1_fe_negate(&h3, &h3, 1);
411  secp256k1_fe_add(&r->y, &h3);
412 }
413 
414 static void secp256k1_gej_add_ge_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, secp256k1_fe *rzr) {
415  /* 8 mul, 3 sqr, 4 normalize, 12 mul_int/add/negate */
416  secp256k1_fe z12, u1, u2, s1, s2, h, i, i2, h2, h3, t;
417  if (a->infinity) {
418  VERIFY_CHECK(rzr == NULL);
419  secp256k1_gej_set_ge(r, b);
420  return;
421  }
422  if (b->infinity) {
423  if (rzr != NULL) {
424  secp256k1_fe_set_int(rzr, 1);
425  }
426  *r = *a;
427  return;
428  }
429  r->infinity = 0;
430 
431  secp256k1_fe_sqr(&z12, &a->z);
432  u1 = a->x; secp256k1_fe_normalize_weak(&u1);
433  secp256k1_fe_mul(&u2, &b->x, &z12);
434  s1 = a->y; secp256k1_fe_normalize_weak(&s1);
435  secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &a->z);
436  secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2);
437  secp256k1_fe_negate(&i, &s1, 1); secp256k1_fe_add(&i, &s2);
438  if (secp256k1_fe_normalizes_to_zero_var(&h)) {
439  if (secp256k1_fe_normalizes_to_zero_var(&i)) {
440  secp256k1_gej_double_var(r, a, rzr);
441  } else {
442  if (rzr != NULL) {
443  secp256k1_fe_set_int(rzr, 0);
444  }
445  r->infinity = 1;
446  }
447  return;
448  }
449  secp256k1_fe_sqr(&i2, &i);
450  secp256k1_fe_sqr(&h2, &h);
451  secp256k1_fe_mul(&h3, &h, &h2);
452  if (rzr != NULL) {
453  *rzr = h;
454  }
455  secp256k1_fe_mul(&r->z, &a->z, &h);
456  secp256k1_fe_mul(&t, &u1, &h2);
457  r->x = t; secp256k1_fe_mul_int(&r->x, 2); secp256k1_fe_add(&r->x, &h3); secp256k1_fe_negate(&r->x, &r->x, 3); secp256k1_fe_add(&r->x, &i2);
458  secp256k1_fe_negate(&r->y, &r->x, 5); secp256k1_fe_add(&r->y, &t); secp256k1_fe_mul(&r->y, &r->y, &i);
459  secp256k1_fe_mul(&h3, &h3, &s1); secp256k1_fe_negate(&h3, &h3, 1);
460  secp256k1_fe_add(&r->y, &h3);
461 }
462 
463 static void secp256k1_gej_add_zinv_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, const secp256k1_fe *bzinv) {
464  /* 9 mul, 3 sqr, 4 normalize, 12 mul_int/add/negate */
465  secp256k1_fe az, z12, u1, u2, s1, s2, h, i, i2, h2, h3, t;
466 
467  if (b->infinity) {
468  *r = *a;
469  return;
470  }
471  if (a->infinity) {
472  secp256k1_fe bzinv2, bzinv3;
473  r->infinity = b->infinity;
474  secp256k1_fe_sqr(&bzinv2, bzinv);
475  secp256k1_fe_mul(&bzinv3, &bzinv2, bzinv);
476  secp256k1_fe_mul(&r->x, &b->x, &bzinv2);
477  secp256k1_fe_mul(&r->y, &b->y, &bzinv3);
478  secp256k1_fe_set_int(&r->z, 1);
479  return;
480  }
481  r->infinity = 0;
482 
491  secp256k1_fe_mul(&az, &a->z, bzinv);
492 
493  secp256k1_fe_sqr(&z12, &az);
494  u1 = a->x; secp256k1_fe_normalize_weak(&u1);
495  secp256k1_fe_mul(&u2, &b->x, &z12);
496  s1 = a->y; secp256k1_fe_normalize_weak(&s1);
497  secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &az);
498  secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2);
499  secp256k1_fe_negate(&i, &s1, 1); secp256k1_fe_add(&i, &s2);
500  if (secp256k1_fe_normalizes_to_zero_var(&h)) {
501  if (secp256k1_fe_normalizes_to_zero_var(&i)) {
502  secp256k1_gej_double_var(r, a, NULL);
503  } else {
504  r->infinity = 1;
505  }
506  return;
507  }
508  secp256k1_fe_sqr(&i2, &i);
509  secp256k1_fe_sqr(&h2, &h);
510  secp256k1_fe_mul(&h3, &h, &h2);
511  r->z = a->z; secp256k1_fe_mul(&r->z, &r->z, &h);
512  secp256k1_fe_mul(&t, &u1, &h2);
513  r->x = t; secp256k1_fe_mul_int(&r->x, 2); secp256k1_fe_add(&r->x, &h3); secp256k1_fe_negate(&r->x, &r->x, 3); secp256k1_fe_add(&r->x, &i2);
514  secp256k1_fe_negate(&r->y, &r->x, 5); secp256k1_fe_add(&r->y, &t); secp256k1_fe_mul(&r->y, &r->y, &i);
515  secp256k1_fe_mul(&h3, &h3, &s1); secp256k1_fe_negate(&h3, &h3, 1);
516  secp256k1_fe_add(&r->y, &h3);
517 }
518 
519 
520 static void secp256k1_gej_add_ge(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b) {
521  /* Operations: 7 mul, 5 sqr, 4 normalize, 21 mul_int/add/negate/cmov */
522  static const secp256k1_fe fe_1 = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 1);
523  secp256k1_fe zz, u1, u2, s1, s2, t, tt, m, n, q, rr;
524  secp256k1_fe m_alt, rr_alt;
525  int infinity, degenerate;
526  VERIFY_CHECK(!b->infinity);
527  VERIFY_CHECK(a->infinity == 0 || a->infinity == 1);
528 
579  secp256k1_fe_sqr(&zz, &a->z); /* z = Z1^2 */
580  u1 = a->x; secp256k1_fe_normalize_weak(&u1); /* u1 = U1 = X1*Z2^2 (1) */
581  secp256k1_fe_mul(&u2, &b->x, &zz); /* u2 = U2 = X2*Z1^2 (1) */
582  s1 = a->y; secp256k1_fe_normalize_weak(&s1); /* s1 = S1 = Y1*Z2^3 (1) */
583  secp256k1_fe_mul(&s2, &b->y, &zz); /* s2 = Y2*Z1^2 (1) */
584  secp256k1_fe_mul(&s2, &s2, &a->z); /* s2 = S2 = Y2*Z1^3 (1) */
585  t = u1; secp256k1_fe_add(&t, &u2); /* t = T = U1+U2 (2) */
586  m = s1; secp256k1_fe_add(&m, &s2); /* m = M = S1+S2 (2) */
587  secp256k1_fe_sqr(&rr, &t); /* rr = T^2 (1) */
588  secp256k1_fe_negate(&m_alt, &u2, 1); /* Malt = -X2*Z1^2 */
589  secp256k1_fe_mul(&tt, &u1, &m_alt); /* tt = -U1*U2 (2) */
590  secp256k1_fe_add(&rr, &tt); /* rr = R = T^2-U1*U2 (3) */
593  degenerate = secp256k1_fe_normalizes_to_zero(&m) &
594  secp256k1_fe_normalizes_to_zero(&rr);
595  /* This only occurs when y1 == -y2 and x1^3 == x2^3, but x1 != x2.
596  * This means either x1 == beta*x2 or beta*x1 == x2, where beta is
597  * a nontrivial cube root of one. In either case, an alternate
598  * non-indeterminate expression for lambda is (y1 - y2)/(x1 - x2),
599  * so we set R/M equal to this. */
600  rr_alt = s1;
601  secp256k1_fe_mul_int(&rr_alt, 2); /* rr = Y1*Z2^3 - Y2*Z1^3 (2) */
602  secp256k1_fe_add(&m_alt, &u1); /* Malt = X1*Z2^2 - X2*Z1^2 */
603 
604  secp256k1_fe_cmov(&rr_alt, &rr, !degenerate);
605  secp256k1_fe_cmov(&m_alt, &m, !degenerate);
606  /* Now Ralt / Malt = lambda and is guaranteed not to be 0/0.
607  * From here on out Ralt and Malt represent the numerator
608  * and denominator of lambda; R and M represent the explicit
609  * expressions x1^2 + x2^2 + x1x2 and y1 + y2. */
610  secp256k1_fe_sqr(&n, &m_alt); /* n = Malt^2 (1) */
611  secp256k1_fe_mul(&q, &n, &t); /* q = Q = T*Malt^2 (1) */
612  /* These two lines use the observation that either M == Malt or M == 0,
613  * so M^3 * Malt is either Malt^4 (which is computed by squaring), or
614  * zero (which is "computed" by cmov). So the cost is one squaring
615  * versus two multiplications. */
616  secp256k1_fe_sqr(&n, &n);
617  secp256k1_fe_cmov(&n, &m, degenerate); /* n = M^3 * Malt (2) */
618  secp256k1_fe_sqr(&t, &rr_alt); /* t = Ralt^2 (1) */
619  secp256k1_fe_mul(&r->z, &a->z, &m_alt); /* r->z = Malt*Z (1) */
620  infinity = secp256k1_fe_normalizes_to_zero(&r->z) * (1 - a->infinity);
621  secp256k1_fe_mul_int(&r->z, 2); /* r->z = Z3 = 2*Malt*Z (2) */
622  secp256k1_fe_negate(&q, &q, 1); /* q = -Q (2) */
623  secp256k1_fe_add(&t, &q); /* t = Ralt^2-Q (3) */
624  secp256k1_fe_normalize_weak(&t);
625  r->x = t; /* r->x = Ralt^2-Q (1) */
626  secp256k1_fe_mul_int(&t, 2); /* t = 2*x3 (2) */
627  secp256k1_fe_add(&t, &q); /* t = 2*x3 - Q: (4) */
628  secp256k1_fe_mul(&t, &t, &rr_alt); /* t = Ralt*(2*x3 - Q) (1) */
629  secp256k1_fe_add(&t, &n); /* t = Ralt*(2*x3 - Q) + M^3*Malt (3) */
630  secp256k1_fe_negate(&r->y, &t, 3); /* r->y = Ralt*(Q - 2x3) - M^3*Malt (4) */
631  secp256k1_fe_normalize_weak(&r->y);
632  secp256k1_fe_mul_int(&r->x, 4); /* r->x = X3 = 4*(Ralt^2-Q) */
633  secp256k1_fe_mul_int(&r->y, 4); /* r->y = Y3 = 4*Ralt*(Q - 2x3) - 4*M^3*Malt (4) */
634 
636  secp256k1_fe_cmov(&r->x, &b->x, a->infinity);
637  secp256k1_fe_cmov(&r->y, &b->y, a->infinity);
638  secp256k1_fe_cmov(&r->z, &fe_1, a->infinity);
639  r->infinity = infinity;
640 }
641 
642 static void secp256k1_gej_rescale(secp256k1_gej *r, const secp256k1_fe *s) {
643  /* Operations: 4 mul, 1 sqr */
644  secp256k1_fe zz;
645  VERIFY_CHECK(!secp256k1_fe_is_zero(s));
646  secp256k1_fe_sqr(&zz, s);
647  secp256k1_fe_mul(&r->x, &r->x, &zz); /* r->x *= s^2 */
648  secp256k1_fe_mul(&r->y, &r->y, &zz);
649  secp256k1_fe_mul(&r->y, &r->y, s); /* r->y *= s^3 */
650  secp256k1_fe_mul(&r->z, &r->z, s); /* r->z *= s */
651 }
652 
653 static void secp256k1_ge_to_storage(secp256k1_ge_storage *r, const secp256k1_ge *a) {
654  secp256k1_fe x, y;
655  VERIFY_CHECK(!a->infinity);
656  x = a->x;
657  secp256k1_fe_normalize(&x);
658  y = a->y;
659  secp256k1_fe_normalize(&y);
660  secp256k1_fe_to_storage(&r->x, &x);
661  secp256k1_fe_to_storage(&r->y, &y);
662 }
663 
664 static void secp256k1_ge_from_storage(secp256k1_ge *r, const secp256k1_ge_storage *a) {
665  secp256k1_fe_from_storage(&r->x, &a->x);
666  secp256k1_fe_from_storage(&r->y, &a->y);
667  r->infinity = 0;
668 }
669 
670 static SECP256K1_INLINE void secp256k1_ge_storage_cmov(secp256k1_ge_storage *r, const secp256k1_ge_storage *a, int flag) {
671  secp256k1_fe_storage_cmov(&r->x, &a->x, flag);
672  secp256k1_fe_storage_cmov(&r->y, &a->y, flag);
673 }
674 
675 #ifdef USE_ENDOMORPHISM
676 static void secp256k1_ge_mul_lambda(secp256k1_ge *r, const secp256k1_ge *a) {
677  static const secp256k1_fe beta = SECP256K1_FE_CONST(
678  0x7ae96a2bul, 0x657c0710ul, 0x6e64479eul, 0xac3434e9ul,
679  0x9cf04975ul, 0x12f58995ul, 0xc1396c28ul, 0x719501eeul
680  );
681  *r = *a;
682  secp256k1_fe_mul(&r->x, &r->x, &beta);
683 }
684 #endif
685 
686 static int secp256k1_gej_has_quad_y_var(const secp256k1_gej *a) {
687  secp256k1_fe yz;
688 
689  if (a->infinity) {
690  return 0;
691  }
692 
693  /* We rely on the fact that the Jacobi symbol of 1 / a->z^3 is the same as
694  * that of a->z. Thus a->y / a->z^3 is a quadratic residue iff a->y * a->z
695  is */
696  secp256k1_fe_mul(&yz, &a->y, &a->z);
697  return secp256k1_fe_is_quad_var(&yz);
698 }
699 
700 #endif /* SECP256K1_GROUP_IMPL_H */
#define VERIFY_CHECK(cond)
Definition: util.h:67
#define s2
Definition: sph_hamsi.c:214
secp256k1_fe x
Definition: group.h:25
secp256k1_fe_storage y
Definition: group.h:36
A group element of the secp256k1 curve, in jacobian coordinates.
Definition: group.h:24
#define SECP256K1_FE_CONST(d7, d6, d5, d4, d3, d2, d1, d0)
Definition: field_10x26.h:38
#define SECP256K1_INLINE
Definition: secp256k1.h:110
const int CURVE_B
Definition: group_impl.h:71
int infinity
Definition: group.h:28
secp256k1_fe_storage x
Definition: group.h:35
A group element of the secp256k1 curve, in affine coordinates.
Definition: group.h:14
secp256k1_fe x
Definition: group.h:15
int infinity
Definition: group.h:17
#define s1(x)
Definition: sha2.c:57
#define SECP256K1_GE_CONST(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p)
Definition: group.h:20
secp256k1_fe z
Definition: group.h:27
secp256k1_fe y
Definition: group.h:26
secp256k1_fe y
Definition: group.h:16