Raven Core  3.0.0
P2P Digital Currency
scalar_4x64_impl.h
Go to the documentation of this file.
1 /**********************************************************************
2  * Copyright (c) 2013, 2014 Pieter Wuille *
3  * Distributed under the MIT software license, see the accompanying *
4  * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
5  **********************************************************************/
6 
7 #ifndef SECP256K1_SCALAR_REPR_IMPL_H
8 #define SECP256K1_SCALAR_REPR_IMPL_H
9 
10 /* Limbs of the secp256k1 order. */
11 #define SECP256K1_N_0 ((uint64_t)0xBFD25E8CD0364141ULL)
12 #define SECP256K1_N_1 ((uint64_t)0xBAAEDCE6AF48A03BULL)
13 #define SECP256K1_N_2 ((uint64_t)0xFFFFFFFFFFFFFFFEULL)
14 #define SECP256K1_N_3 ((uint64_t)0xFFFFFFFFFFFFFFFFULL)
15 
16 /* Limbs of 2^256 minus the secp256k1 order. */
17 #define SECP256K1_N_C_0 (~SECP256K1_N_0 + 1)
18 #define SECP256K1_N_C_1 (~SECP256K1_N_1)
19 #define SECP256K1_N_C_2 (1)
20 
21 /* Limbs of half the secp256k1 order. */
22 #define SECP256K1_N_H_0 ((uint64_t)0xDFE92F46681B20A0ULL)
23 #define SECP256K1_N_H_1 ((uint64_t)0x5D576E7357A4501DULL)
24 #define SECP256K1_N_H_2 ((uint64_t)0xFFFFFFFFFFFFFFFFULL)
25 #define SECP256K1_N_H_3 ((uint64_t)0x7FFFFFFFFFFFFFFFULL)
26 
27 SECP256K1_INLINE static void secp256k1_scalar_clear(secp256k1_scalar *r) {
28  r->d[0] = 0;
29  r->d[1] = 0;
30  r->d[2] = 0;
31  r->d[3] = 0;
32 }
33 
34 SECP256K1_INLINE static void secp256k1_scalar_set_int(secp256k1_scalar *r, unsigned int v) {
35  r->d[0] = v;
36  r->d[1] = 0;
37  r->d[2] = 0;
38  r->d[3] = 0;
39 }
40 
41 SECP256K1_INLINE static unsigned int secp256k1_scalar_get_bits(const secp256k1_scalar *a, unsigned int offset, unsigned int count) {
42  VERIFY_CHECK((offset + count - 1) >> 6 == offset >> 6);
43  return (a->d[offset >> 6] >> (offset & 0x3F)) & ((((uint64_t)1) << count) - 1);
44 }
45 
46 SECP256K1_INLINE static unsigned int secp256k1_scalar_get_bits_var(const secp256k1_scalar *a, unsigned int offset, unsigned int count) {
47  VERIFY_CHECK(count < 32);
48  VERIFY_CHECK(offset + count <= 256);
49  if ((offset + count - 1) >> 6 == offset >> 6) {
50  return secp256k1_scalar_get_bits(a, offset, count);
51  } else {
52  VERIFY_CHECK((offset >> 6) + 1 < 4);
53  return ((a->d[offset >> 6] >> (offset & 0x3F)) | (a->d[(offset >> 6) + 1] << (64 - (offset & 0x3F)))) & ((((uint64_t)1) << count) - 1);
54  }
55 }
56 
57 SECP256K1_INLINE static int secp256k1_scalar_check_overflow(const secp256k1_scalar *a) {
58  int yes = 0;
59  int no = 0;
60  no |= (a->d[3] < SECP256K1_N_3); /* No need for a > check. */
61  no |= (a->d[2] < SECP256K1_N_2);
62  yes |= (a->d[2] > SECP256K1_N_2) & ~no;
63  no |= (a->d[1] < SECP256K1_N_1);
64  yes |= (a->d[1] > SECP256K1_N_1) & ~no;
65  yes |= (a->d[0] >= SECP256K1_N_0) & ~no;
66  return yes;
67 }
68 
69 SECP256K1_INLINE static int secp256k1_scalar_reduce(secp256k1_scalar *r, unsigned int overflow) {
70  uint128_t t;
71  VERIFY_CHECK(overflow <= 1);
72  t = (uint128_t)r->d[0] + overflow * SECP256K1_N_C_0;
73  r->d[0] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
74  t += (uint128_t)r->d[1] + overflow * SECP256K1_N_C_1;
75  r->d[1] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
76  t += (uint128_t)r->d[2] + overflow * SECP256K1_N_C_2;
77  r->d[2] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
78  t += (uint64_t)r->d[3];
79  r->d[3] = t & 0xFFFFFFFFFFFFFFFFULL;
80  return overflow;
81 }
82 
83 static int secp256k1_scalar_add(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b) {
84  int overflow;
85  uint128_t t = (uint128_t)a->d[0] + b->d[0];
86  r->d[0] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
87  t += (uint128_t)a->d[1] + b->d[1];
88  r->d[1] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
89  t += (uint128_t)a->d[2] + b->d[2];
90  r->d[2] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
91  t += (uint128_t)a->d[3] + b->d[3];
92  r->d[3] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
93  overflow = t + secp256k1_scalar_check_overflow(r);
94  VERIFY_CHECK(overflow == 0 || overflow == 1);
95  secp256k1_scalar_reduce(r, overflow);
96  return overflow;
97 }
98 
99 static void secp256k1_scalar_cadd_bit(secp256k1_scalar *r, unsigned int bit, int flag) {
100  uint128_t t;
101  VERIFY_CHECK(bit < 256);
102  bit += ((uint32_t) flag - 1) & 0x100; /* forcing (bit >> 6) > 3 makes this a noop */
103  t = (uint128_t)r->d[0] + (((uint64_t)((bit >> 6) == 0)) << (bit & 0x3F));
104  r->d[0] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
105  t += (uint128_t)r->d[1] + (((uint64_t)((bit >> 6) == 1)) << (bit & 0x3F));
106  r->d[1] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
107  t += (uint128_t)r->d[2] + (((uint64_t)((bit >> 6) == 2)) << (bit & 0x3F));
108  r->d[2] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
109  t += (uint128_t)r->d[3] + (((uint64_t)((bit >> 6) == 3)) << (bit & 0x3F));
110  r->d[3] = t & 0xFFFFFFFFFFFFFFFFULL;
111 #ifdef VERIFY
112  VERIFY_CHECK((t >> 64) == 0);
113  VERIFY_CHECK(secp256k1_scalar_check_overflow(r) == 0);
114 #endif
115 }
116 
117 static void secp256k1_scalar_set_b32(secp256k1_scalar *r, const unsigned char *b32, int *overflow) {
118  int over;
119  r->d[0] = (uint64_t)b32[31] | (uint64_t)b32[30] << 8 | (uint64_t)b32[29] << 16 | (uint64_t)b32[28] << 24 | (uint64_t)b32[27] << 32 | (uint64_t)b32[26] << 40 | (uint64_t)b32[25] << 48 | (uint64_t)b32[24] << 56;
120  r->d[1] = (uint64_t)b32[23] | (uint64_t)b32[22] << 8 | (uint64_t)b32[21] << 16 | (uint64_t)b32[20] << 24 | (uint64_t)b32[19] << 32 | (uint64_t)b32[18] << 40 | (uint64_t)b32[17] << 48 | (uint64_t)b32[16] << 56;
121  r->d[2] = (uint64_t)b32[15] | (uint64_t)b32[14] << 8 | (uint64_t)b32[13] << 16 | (uint64_t)b32[12] << 24 | (uint64_t)b32[11] << 32 | (uint64_t)b32[10] << 40 | (uint64_t)b32[9] << 48 | (uint64_t)b32[8] << 56;
122  r->d[3] = (uint64_t)b32[7] | (uint64_t)b32[6] << 8 | (uint64_t)b32[5] << 16 | (uint64_t)b32[4] << 24 | (uint64_t)b32[3] << 32 | (uint64_t)b32[2] << 40 | (uint64_t)b32[1] << 48 | (uint64_t)b32[0] << 56;
123  over = secp256k1_scalar_reduce(r, secp256k1_scalar_check_overflow(r));
124  if (overflow) {
125  *overflow = over;
126  }
127 }
128 
129 static void secp256k1_scalar_get_b32(unsigned char *bin, const secp256k1_scalar* a) {
130  bin[0] = a->d[3] >> 56; bin[1] = a->d[3] >> 48; bin[2] = a->d[3] >> 40; bin[3] = a->d[3] >> 32; bin[4] = a->d[3] >> 24; bin[5] = a->d[3] >> 16; bin[6] = a->d[3] >> 8; bin[7] = a->d[3];
131  bin[8] = a->d[2] >> 56; bin[9] = a->d[2] >> 48; bin[10] = a->d[2] >> 40; bin[11] = a->d[2] >> 32; bin[12] = a->d[2] >> 24; bin[13] = a->d[2] >> 16; bin[14] = a->d[2] >> 8; bin[15] = a->d[2];
132  bin[16] = a->d[1] >> 56; bin[17] = a->d[1] >> 48; bin[18] = a->d[1] >> 40; bin[19] = a->d[1] >> 32; bin[20] = a->d[1] >> 24; bin[21] = a->d[1] >> 16; bin[22] = a->d[1] >> 8; bin[23] = a->d[1];
133  bin[24] = a->d[0] >> 56; bin[25] = a->d[0] >> 48; bin[26] = a->d[0] >> 40; bin[27] = a->d[0] >> 32; bin[28] = a->d[0] >> 24; bin[29] = a->d[0] >> 16; bin[30] = a->d[0] >> 8; bin[31] = a->d[0];
134 }
135 
136 SECP256K1_INLINE static int secp256k1_scalar_is_zero(const secp256k1_scalar *a) {
137  return (a->d[0] | a->d[1] | a->d[2] | a->d[3]) == 0;
138 }
139 
140 static void secp256k1_scalar_negate(secp256k1_scalar *r, const secp256k1_scalar *a) {
141  uint64_t nonzero = 0xFFFFFFFFFFFFFFFFULL * (secp256k1_scalar_is_zero(a) == 0);
142  uint128_t t = (uint128_t)(~a->d[0]) + SECP256K1_N_0 + 1;
143  r->d[0] = t & nonzero; t >>= 64;
144  t += (uint128_t)(~a->d[1]) + SECP256K1_N_1;
145  r->d[1] = t & nonzero; t >>= 64;
146  t += (uint128_t)(~a->d[2]) + SECP256K1_N_2;
147  r->d[2] = t & nonzero; t >>= 64;
148  t += (uint128_t)(~a->d[3]) + SECP256K1_N_3;
149  r->d[3] = t & nonzero;
150 }
151 
152 SECP256K1_INLINE static int secp256k1_scalar_is_one(const secp256k1_scalar *a) {
153  return ((a->d[0] ^ 1) | a->d[1] | a->d[2] | a->d[3]) == 0;
154 }
155 
156 static int secp256k1_scalar_is_high(const secp256k1_scalar *a) {
157  int yes = 0;
158  int no = 0;
159  no |= (a->d[3] < SECP256K1_N_H_3);
160  yes |= (a->d[3] > SECP256K1_N_H_3) & ~no;
161  no |= (a->d[2] < SECP256K1_N_H_2) & ~yes; /* No need for a > check. */
162  no |= (a->d[1] < SECP256K1_N_H_1) & ~yes;
163  yes |= (a->d[1] > SECP256K1_N_H_1) & ~no;
164  yes |= (a->d[0] > SECP256K1_N_H_0) & ~no;
165  return yes;
166 }
167 
168 static int secp256k1_scalar_cond_negate(secp256k1_scalar *r, int flag) {
169  /* If we are flag = 0, mask = 00...00 and this is a no-op;
170  * if we are flag = 1, mask = 11...11 and this is identical to secp256k1_scalar_negate */
171  uint64_t mask = !flag - 1;
172  uint64_t nonzero = (secp256k1_scalar_is_zero(r) != 0) - 1;
173  uint128_t t = (uint128_t)(r->d[0] ^ mask) + ((SECP256K1_N_0 + 1) & mask);
174  r->d[0] = t & nonzero; t >>= 64;
175  t += (uint128_t)(r->d[1] ^ mask) + (SECP256K1_N_1 & mask);
176  r->d[1] = t & nonzero; t >>= 64;
177  t += (uint128_t)(r->d[2] ^ mask) + (SECP256K1_N_2 & mask);
178  r->d[2] = t & nonzero; t >>= 64;
179  t += (uint128_t)(r->d[3] ^ mask) + (SECP256K1_N_3 & mask);
180  r->d[3] = t & nonzero;
181  return 2 * (mask == 0) - 1;
182 }
183 
184 /* Inspired by the macros in OpenSSL's crypto/bn/asm/x86_64-gcc.c. */
185 
187 #define muladd(a,b) { \
188  uint64_t tl, th; \
189  { \
190  uint128_t t = (uint128_t)a * b; \
191  th = t >> 64; /* at most 0xFFFFFFFFFFFFFFFE */ \
192  tl = t; \
193  } \
194  c0 += tl; /* overflow is handled on the next line */ \
195  th += (c0 < tl) ? 1 : 0; /* at most 0xFFFFFFFFFFFFFFFF */ \
196  c1 += th; /* overflow is handled on the next line */ \
197  c2 += (c1 < th) ? 1 : 0; /* never overflows by contract (verified in the next line) */ \
198  VERIFY_CHECK((c1 >= th) || (c2 != 0)); \
199 }
200 
202 #define muladd_fast(a,b) { \
203  uint64_t tl, th; \
204  { \
205  uint128_t t = (uint128_t)a * b; \
206  th = t >> 64; /* at most 0xFFFFFFFFFFFFFFFE */ \
207  tl = t; \
208  } \
209  c0 += tl; /* overflow is handled on the next line */ \
210  th += (c0 < tl) ? 1 : 0; /* at most 0xFFFFFFFFFFFFFFFF */ \
211  c1 += th; /* never overflows by contract (verified in the next line) */ \
212  VERIFY_CHECK(c1 >= th); \
213 }
214 
216 #define muladd2(a,b) { \
217  uint64_t tl, th, th2, tl2; \
218  { \
219  uint128_t t = (uint128_t)a * b; \
220  th = t >> 64; /* at most 0xFFFFFFFFFFFFFFFE */ \
221  tl = t; \
222  } \
223  th2 = th + th; /* at most 0xFFFFFFFFFFFFFFFE (in case th was 0x7FFFFFFFFFFFFFFF) */ \
224  c2 += (th2 < th) ? 1 : 0; /* never overflows by contract (verified the next line) */ \
225  VERIFY_CHECK((th2 >= th) || (c2 != 0)); \
226  tl2 = tl + tl; /* at most 0xFFFFFFFFFFFFFFFE (in case the lowest 63 bits of tl were 0x7FFFFFFFFFFFFFFF) */ \
227  th2 += (tl2 < tl) ? 1 : 0; /* at most 0xFFFFFFFFFFFFFFFF */ \
228  c0 += tl2; /* overflow is handled on the next line */ \
229  th2 += (c0 < tl2) ? 1 : 0; /* second overflow is handled on the next line */ \
230  c2 += (c0 < tl2) & (th2 == 0); /* never overflows by contract (verified the next line) */ \
231  VERIFY_CHECK((c0 >= tl2) || (th2 != 0) || (c2 != 0)); \
232  c1 += th2; /* overflow is handled on the next line */ \
233  c2 += (c1 < th2) ? 1 : 0; /* never overflows by contract (verified the next line) */ \
234  VERIFY_CHECK((c1 >= th2) || (c2 != 0)); \
235 }
236 
238 #define sumadd(a) { \
239  unsigned int over; \
240  c0 += (a); /* overflow is handled on the next line */ \
241  over = (c0 < (a)) ? 1 : 0; \
242  c1 += over; /* overflow is handled on the next line */ \
243  c2 += (c1 < over) ? 1 : 0; /* never overflows by contract */ \
244 }
245 
247 #define sumadd_fast(a) { \
248  c0 += (a); /* overflow is handled on the next line */ \
249  c1 += (c0 < (a)) ? 1 : 0; /* never overflows by contract (verified the next line) */ \
250  VERIFY_CHECK((c1 != 0) | (c0 >= (a))); \
251  VERIFY_CHECK(c2 == 0); \
252 }
253 
255 #define extract(n) { \
256  (n) = c0; \
257  c0 = c1; \
258  c1 = c2; \
259  c2 = 0; \
260 }
261 
263 #define extract_fast(n) { \
264  (n) = c0; \
265  c0 = c1; \
266  c1 = 0; \
267  VERIFY_CHECK(c2 == 0); \
268 }
269 
270 static void secp256k1_scalar_reduce_512(secp256k1_scalar *r, const uint64_t *l) {
271 #ifdef USE_ASM_X86_64
272  /* Reduce 512 bits into 385. */
273  uint64_t m0, m1, m2, m3, m4, m5, m6;
274  uint64_t p0, p1, p2, p3, p4;
275  uint64_t c;
276 
277  __asm__ __volatile__(
278  /* Preload. */
279  "movq 32(%%rsi), %%r11\n"
280  "movq 40(%%rsi), %%r12\n"
281  "movq 48(%%rsi), %%r13\n"
282  "movq 56(%%rsi), %%r14\n"
283  /* Initialize r8,r9,r10 */
284  "movq 0(%%rsi), %%r8\n"
285  "xorq %%r9, %%r9\n"
286  "xorq %%r10, %%r10\n"
287  /* (r8,r9) += n0 * c0 */
288  "movq %8, %%rax\n"
289  "mulq %%r11\n"
290  "addq %%rax, %%r8\n"
291  "adcq %%rdx, %%r9\n"
292  /* extract m0 */
293  "movq %%r8, %q0\n"
294  "xorq %%r8, %%r8\n"
295  /* (r9,r10) += l1 */
296  "addq 8(%%rsi), %%r9\n"
297  "adcq $0, %%r10\n"
298  /* (r9,r10,r8) += n1 * c0 */
299  "movq %8, %%rax\n"
300  "mulq %%r12\n"
301  "addq %%rax, %%r9\n"
302  "adcq %%rdx, %%r10\n"
303  "adcq $0, %%r8\n"
304  /* (r9,r10,r8) += n0 * c1 */
305  "movq %9, %%rax\n"
306  "mulq %%r11\n"
307  "addq %%rax, %%r9\n"
308  "adcq %%rdx, %%r10\n"
309  "adcq $0, %%r8\n"
310  /* extract m1 */
311  "movq %%r9, %q1\n"
312  "xorq %%r9, %%r9\n"
313  /* (r10,r8,r9) += l2 */
314  "addq 16(%%rsi), %%r10\n"
315  "adcq $0, %%r8\n"
316  "adcq $0, %%r9\n"
317  /* (r10,r8,r9) += n2 * c0 */
318  "movq %8, %%rax\n"
319  "mulq %%r13\n"
320  "addq %%rax, %%r10\n"
321  "adcq %%rdx, %%r8\n"
322  "adcq $0, %%r9\n"
323  /* (r10,r8,r9) += n1 * c1 */
324  "movq %9, %%rax\n"
325  "mulq %%r12\n"
326  "addq %%rax, %%r10\n"
327  "adcq %%rdx, %%r8\n"
328  "adcq $0, %%r9\n"
329  /* (r10,r8,r9) += n0 */
330  "addq %%r11, %%r10\n"
331  "adcq $0, %%r8\n"
332  "adcq $0, %%r9\n"
333  /* extract m2 */
334  "movq %%r10, %q2\n"
335  "xorq %%r10, %%r10\n"
336  /* (r8,r9,r10) += l3 */
337  "addq 24(%%rsi), %%r8\n"
338  "adcq $0, %%r9\n"
339  "adcq $0, %%r10\n"
340  /* (r8,r9,r10) += n3 * c0 */
341  "movq %8, %%rax\n"
342  "mulq %%r14\n"
343  "addq %%rax, %%r8\n"
344  "adcq %%rdx, %%r9\n"
345  "adcq $0, %%r10\n"
346  /* (r8,r9,r10) += n2 * c1 */
347  "movq %9, %%rax\n"
348  "mulq %%r13\n"
349  "addq %%rax, %%r8\n"
350  "adcq %%rdx, %%r9\n"
351  "adcq $0, %%r10\n"
352  /* (r8,r9,r10) += n1 */
353  "addq %%r12, %%r8\n"
354  "adcq $0, %%r9\n"
355  "adcq $0, %%r10\n"
356  /* extract m3 */
357  "movq %%r8, %q3\n"
358  "xorq %%r8, %%r8\n"
359  /* (r9,r10,r8) += n3 * c1 */
360  "movq %9, %%rax\n"
361  "mulq %%r14\n"
362  "addq %%rax, %%r9\n"
363  "adcq %%rdx, %%r10\n"
364  "adcq $0, %%r8\n"
365  /* (r9,r10,r8) += n2 */
366  "addq %%r13, %%r9\n"
367  "adcq $0, %%r10\n"
368  "adcq $0, %%r8\n"
369  /* extract m4 */
370  "movq %%r9, %q4\n"
371  /* (r10,r8) += n3 */
372  "addq %%r14, %%r10\n"
373  "adcq $0, %%r8\n"
374  /* extract m5 */
375  "movq %%r10, %q5\n"
376  /* extract m6 */
377  "movq %%r8, %q6\n"
378  : "=g"(m0), "=g"(m1), "=g"(m2), "=g"(m3), "=g"(m4), "=g"(m5), "=g"(m6)
379  : "S"(l), "n"(SECP256K1_N_C_0), "n"(SECP256K1_N_C_1)
380  : "rax", "rdx", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "cc");
381 
382  /* Reduce 385 bits into 258. */
383  __asm__ __volatile__(
384  /* Preload */
385  "movq %q9, %%r11\n"
386  "movq %q10, %%r12\n"
387  "movq %q11, %%r13\n"
388  /* Initialize (r8,r9,r10) */
389  "movq %q5, %%r8\n"
390  "xorq %%r9, %%r9\n"
391  "xorq %%r10, %%r10\n"
392  /* (r8,r9) += m4 * c0 */
393  "movq %12, %%rax\n"
394  "mulq %%r11\n"
395  "addq %%rax, %%r8\n"
396  "adcq %%rdx, %%r9\n"
397  /* extract p0 */
398  "movq %%r8, %q0\n"
399  "xorq %%r8, %%r8\n"
400  /* (r9,r10) += m1 */
401  "addq %q6, %%r9\n"
402  "adcq $0, %%r10\n"
403  /* (r9,r10,r8) += m5 * c0 */
404  "movq %12, %%rax\n"
405  "mulq %%r12\n"
406  "addq %%rax, %%r9\n"
407  "adcq %%rdx, %%r10\n"
408  "adcq $0, %%r8\n"
409  /* (r9,r10,r8) += m4 * c1 */
410  "movq %13, %%rax\n"
411  "mulq %%r11\n"
412  "addq %%rax, %%r9\n"
413  "adcq %%rdx, %%r10\n"
414  "adcq $0, %%r8\n"
415  /* extract p1 */
416  "movq %%r9, %q1\n"
417  "xorq %%r9, %%r9\n"
418  /* (r10,r8,r9) += m2 */
419  "addq %q7, %%r10\n"
420  "adcq $0, %%r8\n"
421  "adcq $0, %%r9\n"
422  /* (r10,r8,r9) += m6 * c0 */
423  "movq %12, %%rax\n"
424  "mulq %%r13\n"
425  "addq %%rax, %%r10\n"
426  "adcq %%rdx, %%r8\n"
427  "adcq $0, %%r9\n"
428  /* (r10,r8,r9) += m5 * c1 */
429  "movq %13, %%rax\n"
430  "mulq %%r12\n"
431  "addq %%rax, %%r10\n"
432  "adcq %%rdx, %%r8\n"
433  "adcq $0, %%r9\n"
434  /* (r10,r8,r9) += m4 */
435  "addq %%r11, %%r10\n"
436  "adcq $0, %%r8\n"
437  "adcq $0, %%r9\n"
438  /* extract p2 */
439  "movq %%r10, %q2\n"
440  /* (r8,r9) += m3 */
441  "addq %q8, %%r8\n"
442  "adcq $0, %%r9\n"
443  /* (r8,r9) += m6 * c1 */
444  "movq %13, %%rax\n"
445  "mulq %%r13\n"
446  "addq %%rax, %%r8\n"
447  "adcq %%rdx, %%r9\n"
448  /* (r8,r9) += m5 */
449  "addq %%r12, %%r8\n"
450  "adcq $0, %%r9\n"
451  /* extract p3 */
452  "movq %%r8, %q3\n"
453  /* (r9) += m6 */
454  "addq %%r13, %%r9\n"
455  /* extract p4 */
456  "movq %%r9, %q4\n"
457  : "=&g"(p0), "=&g"(p1), "=&g"(p2), "=g"(p3), "=g"(p4)
458  : "g"(m0), "g"(m1), "g"(m2), "g"(m3), "g"(m4), "g"(m5), "g"(m6), "n"(SECP256K1_N_C_0), "n"(SECP256K1_N_C_1)
459  : "rax", "rdx", "r8", "r9", "r10", "r11", "r12", "r13", "cc");
460 
461  /* Reduce 258 bits into 256. */
462  __asm__ __volatile__(
463  /* Preload */
464  "movq %q5, %%r10\n"
465  /* (rax,rdx) = p4 * c0 */
466  "movq %7, %%rax\n"
467  "mulq %%r10\n"
468  /* (rax,rdx) += p0 */
469  "addq %q1, %%rax\n"
470  "adcq $0, %%rdx\n"
471  /* extract r0 */
472  "movq %%rax, 0(%q6)\n"
473  /* Move to (r8,r9) */
474  "movq %%rdx, %%r8\n"
475  "xorq %%r9, %%r9\n"
476  /* (r8,r9) += p1 */
477  "addq %q2, %%r8\n"
478  "adcq $0, %%r9\n"
479  /* (r8,r9) += p4 * c1 */
480  "movq %8, %%rax\n"
481  "mulq %%r10\n"
482  "addq %%rax, %%r8\n"
483  "adcq %%rdx, %%r9\n"
484  /* Extract r1 */
485  "movq %%r8, 8(%q6)\n"
486  "xorq %%r8, %%r8\n"
487  /* (r9,r8) += p4 */
488  "addq %%r10, %%r9\n"
489  "adcq $0, %%r8\n"
490  /* (r9,r8) += p2 */
491  "addq %q3, %%r9\n"
492  "adcq $0, %%r8\n"
493  /* Extract r2 */
494  "movq %%r9, 16(%q6)\n"
495  "xorq %%r9, %%r9\n"
496  /* (r8,r9) += p3 */
497  "addq %q4, %%r8\n"
498  "adcq $0, %%r9\n"
499  /* Extract r3 */
500  "movq %%r8, 24(%q6)\n"
501  /* Extract c */
502  "movq %%r9, %q0\n"
503  : "=g"(c)
504  : "g"(p0), "g"(p1), "g"(p2), "g"(p3), "g"(p4), "D"(r), "n"(SECP256K1_N_C_0), "n"(SECP256K1_N_C_1)
505  : "rax", "rdx", "r8", "r9", "r10", "cc", "memory");
506 #else
507  uint128_t c;
508  uint64_t c0, c1, c2;
509  uint64_t n0 = l[4], n1 = l[5], n2 = l[6], n3 = l[7];
510  uint64_t m0, m1, m2, m3, m4, m5;
511  uint32_t m6;
512  uint64_t p0, p1, p2, p3;
513  uint32_t p4;
514 
515  /* Reduce 512 bits into 385. */
516  /* m[0..6] = l[0..3] + n[0..3] * SECP256K1_N_C. */
517  c0 = l[0]; c1 = 0; c2 = 0;
519  extract_fast(m0);
520  sumadd_fast(l[1]);
521  muladd(n1, SECP256K1_N_C_0);
522  muladd(n0, SECP256K1_N_C_1);
523  extract(m1);
524  sumadd(l[2]);
525  muladd(n2, SECP256K1_N_C_0);
526  muladd(n1, SECP256K1_N_C_1);
527  sumadd(n0);
528  extract(m2);
529  sumadd(l[3]);
530  muladd(n3, SECP256K1_N_C_0);
531  muladd(n2, SECP256K1_N_C_1);
532  sumadd(n1);
533  extract(m3);
534  muladd(n3, SECP256K1_N_C_1);
535  sumadd(n2);
536  extract(m4);
537  sumadd_fast(n3);
538  extract_fast(m5);
539  VERIFY_CHECK(c0 <= 1);
540  m6 = c0;
541 
542  /* Reduce 385 bits into 258. */
543  /* p[0..4] = m[0..3] + m[4..6] * SECP256K1_N_C. */
544  c0 = m0; c1 = 0; c2 = 0;
546  extract_fast(p0);
547  sumadd_fast(m1);
548  muladd(m5, SECP256K1_N_C_0);
549  muladd(m4, SECP256K1_N_C_1);
550  extract(p1);
551  sumadd(m2);
552  muladd(m6, SECP256K1_N_C_0);
553  muladd(m5, SECP256K1_N_C_1);
554  sumadd(m4);
555  extract(p2);
556  sumadd_fast(m3);
558  sumadd_fast(m5);
559  extract_fast(p3);
560  p4 = c0 + m6;
561  VERIFY_CHECK(p4 <= 2);
562 
563  /* Reduce 258 bits into 256. */
564  /* r[0..3] = p[0..3] + p[4] * SECP256K1_N_C. */
565  c = p0 + (uint128_t)SECP256K1_N_C_0 * p4;
566  r->d[0] = c & 0xFFFFFFFFFFFFFFFFULL; c >>= 64;
567  c += p1 + (uint128_t)SECP256K1_N_C_1 * p4;
568  r->d[1] = c & 0xFFFFFFFFFFFFFFFFULL; c >>= 64;
569  c += p2 + (uint128_t)p4;
570  r->d[2] = c & 0xFFFFFFFFFFFFFFFFULL; c >>= 64;
571  c += p3;
572  r->d[3] = c & 0xFFFFFFFFFFFFFFFFULL; c >>= 64;
573 #endif
574 
575  /* Final reduction of r. */
576  secp256k1_scalar_reduce(r, c + secp256k1_scalar_check_overflow(r));
577 }
578 
579 static void secp256k1_scalar_mul_512(uint64_t l[8], const secp256k1_scalar *a, const secp256k1_scalar *b) {
580 #ifdef USE_ASM_X86_64
581  const uint64_t *pb = b->d;
582  __asm__ __volatile__(
583  /* Preload */
584  "movq 0(%%rdi), %%r15\n"
585  "movq 8(%%rdi), %%rbx\n"
586  "movq 16(%%rdi), %%rcx\n"
587  "movq 0(%%rdx), %%r11\n"
588  "movq 8(%%rdx), %%r12\n"
589  "movq 16(%%rdx), %%r13\n"
590  "movq 24(%%rdx), %%r14\n"
591  /* (rax,rdx) = a0 * b0 */
592  "movq %%r15, %%rax\n"
593  "mulq %%r11\n"
594  /* Extract l0 */
595  "movq %%rax, 0(%%rsi)\n"
596  /* (r8,r9,r10) = (rdx) */
597  "movq %%rdx, %%r8\n"
598  "xorq %%r9, %%r9\n"
599  "xorq %%r10, %%r10\n"
600  /* (r8,r9,r10) += a0 * b1 */
601  "movq %%r15, %%rax\n"
602  "mulq %%r12\n"
603  "addq %%rax, %%r8\n"
604  "adcq %%rdx, %%r9\n"
605  "adcq $0, %%r10\n"
606  /* (r8,r9,r10) += a1 * b0 */
607  "movq %%rbx, %%rax\n"
608  "mulq %%r11\n"
609  "addq %%rax, %%r8\n"
610  "adcq %%rdx, %%r9\n"
611  "adcq $0, %%r10\n"
612  /* Extract l1 */
613  "movq %%r8, 8(%%rsi)\n"
614  "xorq %%r8, %%r8\n"
615  /* (r9,r10,r8) += a0 * b2 */
616  "movq %%r15, %%rax\n"
617  "mulq %%r13\n"
618  "addq %%rax, %%r9\n"
619  "adcq %%rdx, %%r10\n"
620  "adcq $0, %%r8\n"
621  /* (r9,r10,r8) += a1 * b1 */
622  "movq %%rbx, %%rax\n"
623  "mulq %%r12\n"
624  "addq %%rax, %%r9\n"
625  "adcq %%rdx, %%r10\n"
626  "adcq $0, %%r8\n"
627  /* (r9,r10,r8) += a2 * b0 */
628  "movq %%rcx, %%rax\n"
629  "mulq %%r11\n"
630  "addq %%rax, %%r9\n"
631  "adcq %%rdx, %%r10\n"
632  "adcq $0, %%r8\n"
633  /* Extract l2 */
634  "movq %%r9, 16(%%rsi)\n"
635  "xorq %%r9, %%r9\n"
636  /* (r10,r8,r9) += a0 * b3 */
637  "movq %%r15, %%rax\n"
638  "mulq %%r14\n"
639  "addq %%rax, %%r10\n"
640  "adcq %%rdx, %%r8\n"
641  "adcq $0, %%r9\n"
642  /* Preload a3 */
643  "movq 24(%%rdi), %%r15\n"
644  /* (r10,r8,r9) += a1 * b2 */
645  "movq %%rbx, %%rax\n"
646  "mulq %%r13\n"
647  "addq %%rax, %%r10\n"
648  "adcq %%rdx, %%r8\n"
649  "adcq $0, %%r9\n"
650  /* (r10,r8,r9) += a2 * b1 */
651  "movq %%rcx, %%rax\n"
652  "mulq %%r12\n"
653  "addq %%rax, %%r10\n"
654  "adcq %%rdx, %%r8\n"
655  "adcq $0, %%r9\n"
656  /* (r10,r8,r9) += a3 * b0 */
657  "movq %%r15, %%rax\n"
658  "mulq %%r11\n"
659  "addq %%rax, %%r10\n"
660  "adcq %%rdx, %%r8\n"
661  "adcq $0, %%r9\n"
662  /* Extract l3 */
663  "movq %%r10, 24(%%rsi)\n"
664  "xorq %%r10, %%r10\n"
665  /* (r8,r9,r10) += a1 * b3 */
666  "movq %%rbx, %%rax\n"
667  "mulq %%r14\n"
668  "addq %%rax, %%r8\n"
669  "adcq %%rdx, %%r9\n"
670  "adcq $0, %%r10\n"
671  /* (r8,r9,r10) += a2 * b2 */
672  "movq %%rcx, %%rax\n"
673  "mulq %%r13\n"
674  "addq %%rax, %%r8\n"
675  "adcq %%rdx, %%r9\n"
676  "adcq $0, %%r10\n"
677  /* (r8,r9,r10) += a3 * b1 */
678  "movq %%r15, %%rax\n"
679  "mulq %%r12\n"
680  "addq %%rax, %%r8\n"
681  "adcq %%rdx, %%r9\n"
682  "adcq $0, %%r10\n"
683  /* Extract l4 */
684  "movq %%r8, 32(%%rsi)\n"
685  "xorq %%r8, %%r8\n"
686  /* (r9,r10,r8) += a2 * b3 */
687  "movq %%rcx, %%rax\n"
688  "mulq %%r14\n"
689  "addq %%rax, %%r9\n"
690  "adcq %%rdx, %%r10\n"
691  "adcq $0, %%r8\n"
692  /* (r9,r10,r8) += a3 * b2 */
693  "movq %%r15, %%rax\n"
694  "mulq %%r13\n"
695  "addq %%rax, %%r9\n"
696  "adcq %%rdx, %%r10\n"
697  "adcq $0, %%r8\n"
698  /* Extract l5 */
699  "movq %%r9, 40(%%rsi)\n"
700  /* (r10,r8) += a3 * b3 */
701  "movq %%r15, %%rax\n"
702  "mulq %%r14\n"
703  "addq %%rax, %%r10\n"
704  "adcq %%rdx, %%r8\n"
705  /* Extract l6 */
706  "movq %%r10, 48(%%rsi)\n"
707  /* Extract l7 */
708  "movq %%r8, 56(%%rsi)\n"
709  : "+d"(pb)
710  : "S"(l), "D"(a->d)
711  : "rax", "rbx", "rcx", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "cc", "memory");
712 #else
713  /* 160 bit accumulator. */
714  uint64_t c0 = 0, c1 = 0;
715  uint32_t c2 = 0;
716 
717  /* l[0..7] = a[0..3] * b[0..3]. */
718  muladd_fast(a->d[0], b->d[0]);
719  extract_fast(l[0]);
720  muladd(a->d[0], b->d[1]);
721  muladd(a->d[1], b->d[0]);
722  extract(l[1]);
723  muladd(a->d[0], b->d[2]);
724  muladd(a->d[1], b->d[1]);
725  muladd(a->d[2], b->d[0]);
726  extract(l[2]);
727  muladd(a->d[0], b->d[3]);
728  muladd(a->d[1], b->d[2]);
729  muladd(a->d[2], b->d[1]);
730  muladd(a->d[3], b->d[0]);
731  extract(l[3]);
732  muladd(a->d[1], b->d[3]);
733  muladd(a->d[2], b->d[2]);
734  muladd(a->d[3], b->d[1]);
735  extract(l[4]);
736  muladd(a->d[2], b->d[3]);
737  muladd(a->d[3], b->d[2]);
738  extract(l[5]);
739  muladd_fast(a->d[3], b->d[3]);
740  extract_fast(l[6]);
741  VERIFY_CHECK(c1 == 0);
742  l[7] = c0;
743 #endif
744 }
745 
746 static void secp256k1_scalar_sqr_512(uint64_t l[8], const secp256k1_scalar *a) {
747 #ifdef USE_ASM_X86_64
748  __asm__ __volatile__(
749  /* Preload */
750  "movq 0(%%rdi), %%r11\n"
751  "movq 8(%%rdi), %%r12\n"
752  "movq 16(%%rdi), %%r13\n"
753  "movq 24(%%rdi), %%r14\n"
754  /* (rax,rdx) = a0 * a0 */
755  "movq %%r11, %%rax\n"
756  "mulq %%r11\n"
757  /* Extract l0 */
758  "movq %%rax, 0(%%rsi)\n"
759  /* (r8,r9,r10) = (rdx,0) */
760  "movq %%rdx, %%r8\n"
761  "xorq %%r9, %%r9\n"
762  "xorq %%r10, %%r10\n"
763  /* (r8,r9,r10) += 2 * a0 * a1 */
764  "movq %%r11, %%rax\n"
765  "mulq %%r12\n"
766  "addq %%rax, %%r8\n"
767  "adcq %%rdx, %%r9\n"
768  "adcq $0, %%r10\n"
769  "addq %%rax, %%r8\n"
770  "adcq %%rdx, %%r9\n"
771  "adcq $0, %%r10\n"
772  /* Extract l1 */
773  "movq %%r8, 8(%%rsi)\n"
774  "xorq %%r8, %%r8\n"
775  /* (r9,r10,r8) += 2 * a0 * a2 */
776  "movq %%r11, %%rax\n"
777  "mulq %%r13\n"
778  "addq %%rax, %%r9\n"
779  "adcq %%rdx, %%r10\n"
780  "adcq $0, %%r8\n"
781  "addq %%rax, %%r9\n"
782  "adcq %%rdx, %%r10\n"
783  "adcq $0, %%r8\n"
784  /* (r9,r10,r8) += a1 * a1 */
785  "movq %%r12, %%rax\n"
786  "mulq %%r12\n"
787  "addq %%rax, %%r9\n"
788  "adcq %%rdx, %%r10\n"
789  "adcq $0, %%r8\n"
790  /* Extract l2 */
791  "movq %%r9, 16(%%rsi)\n"
792  "xorq %%r9, %%r9\n"
793  /* (r10,r8,r9) += 2 * a0 * a3 */
794  "movq %%r11, %%rax\n"
795  "mulq %%r14\n"
796  "addq %%rax, %%r10\n"
797  "adcq %%rdx, %%r8\n"
798  "adcq $0, %%r9\n"
799  "addq %%rax, %%r10\n"
800  "adcq %%rdx, %%r8\n"
801  "adcq $0, %%r9\n"
802  /* (r10,r8,r9) += 2 * a1 * a2 */
803  "movq %%r12, %%rax\n"
804  "mulq %%r13\n"
805  "addq %%rax, %%r10\n"
806  "adcq %%rdx, %%r8\n"
807  "adcq $0, %%r9\n"
808  "addq %%rax, %%r10\n"
809  "adcq %%rdx, %%r8\n"
810  "adcq $0, %%r9\n"
811  /* Extract l3 */
812  "movq %%r10, 24(%%rsi)\n"
813  "xorq %%r10, %%r10\n"
814  /* (r8,r9,r10) += 2 * a1 * a3 */
815  "movq %%r12, %%rax\n"
816  "mulq %%r14\n"
817  "addq %%rax, %%r8\n"
818  "adcq %%rdx, %%r9\n"
819  "adcq $0, %%r10\n"
820  "addq %%rax, %%r8\n"
821  "adcq %%rdx, %%r9\n"
822  "adcq $0, %%r10\n"
823  /* (r8,r9,r10) += a2 * a2 */
824  "movq %%r13, %%rax\n"
825  "mulq %%r13\n"
826  "addq %%rax, %%r8\n"
827  "adcq %%rdx, %%r9\n"
828  "adcq $0, %%r10\n"
829  /* Extract l4 */
830  "movq %%r8, 32(%%rsi)\n"
831  "xorq %%r8, %%r8\n"
832  /* (r9,r10,r8) += 2 * a2 * a3 */
833  "movq %%r13, %%rax\n"
834  "mulq %%r14\n"
835  "addq %%rax, %%r9\n"
836  "adcq %%rdx, %%r10\n"
837  "adcq $0, %%r8\n"
838  "addq %%rax, %%r9\n"
839  "adcq %%rdx, %%r10\n"
840  "adcq $0, %%r8\n"
841  /* Extract l5 */
842  "movq %%r9, 40(%%rsi)\n"
843  /* (r10,r8) += a3 * a3 */
844  "movq %%r14, %%rax\n"
845  "mulq %%r14\n"
846  "addq %%rax, %%r10\n"
847  "adcq %%rdx, %%r8\n"
848  /* Extract l6 */
849  "movq %%r10, 48(%%rsi)\n"
850  /* Extract l7 */
851  "movq %%r8, 56(%%rsi)\n"
852  :
853  : "S"(l), "D"(a->d)
854  : "rax", "rdx", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "cc", "memory");
855 #else
856  /* 160 bit accumulator. */
857  uint64_t c0 = 0, c1 = 0;
858  uint32_t c2 = 0;
859 
860  /* l[0..7] = a[0..3] * b[0..3]. */
861  muladd_fast(a->d[0], a->d[0]);
862  extract_fast(l[0]);
863  muladd2(a->d[0], a->d[1]);
864  extract(l[1]);
865  muladd2(a->d[0], a->d[2]);
866  muladd(a->d[1], a->d[1]);
867  extract(l[2]);
868  muladd2(a->d[0], a->d[3]);
869  muladd2(a->d[1], a->d[2]);
870  extract(l[3]);
871  muladd2(a->d[1], a->d[3]);
872  muladd(a->d[2], a->d[2]);
873  extract(l[4]);
874  muladd2(a->d[2], a->d[3]);
875  extract(l[5]);
876  muladd_fast(a->d[3], a->d[3]);
877  extract_fast(l[6]);
878  VERIFY_CHECK(c1 == 0);
879  l[7] = c0;
880 #endif
881 }
882 
883 #undef sumadd
884 #undef sumadd_fast
885 #undef muladd
886 #undef muladd_fast
887 #undef muladd2
888 #undef extract
889 #undef extract_fast
890 
891 static void secp256k1_scalar_mul(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b) {
892  uint64_t l[8];
893  secp256k1_scalar_mul_512(l, a, b);
894  secp256k1_scalar_reduce_512(r, l);
895 }
896 
897 static int secp256k1_scalar_shr_int(secp256k1_scalar *r, int n) {
898  int ret;
899  VERIFY_CHECK(n > 0);
900  VERIFY_CHECK(n < 16);
901  ret = r->d[0] & ((1 << n) - 1);
902  r->d[0] = (r->d[0] >> n) + (r->d[1] << (64 - n));
903  r->d[1] = (r->d[1] >> n) + (r->d[2] << (64 - n));
904  r->d[2] = (r->d[2] >> n) + (r->d[3] << (64 - n));
905  r->d[3] = (r->d[3] >> n);
906  return ret;
907 }
908 
909 static void secp256k1_scalar_sqr(secp256k1_scalar *r, const secp256k1_scalar *a) {
910  uint64_t l[8];
911  secp256k1_scalar_sqr_512(l, a);
912  secp256k1_scalar_reduce_512(r, l);
913 }
914 
915 #ifdef USE_ENDOMORPHISM
916 static void secp256k1_scalar_split_128(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *a) {
917  r1->d[0] = a->d[0];
918  r1->d[1] = a->d[1];
919  r1->d[2] = 0;
920  r1->d[3] = 0;
921  r2->d[0] = a->d[2];
922  r2->d[1] = a->d[3];
923  r2->d[2] = 0;
924  r2->d[3] = 0;
925 }
926 #endif
927 
928 SECP256K1_INLINE static int secp256k1_scalar_eq(const secp256k1_scalar *a, const secp256k1_scalar *b) {
929  return ((a->d[0] ^ b->d[0]) | (a->d[1] ^ b->d[1]) | (a->d[2] ^ b->d[2]) | (a->d[3] ^ b->d[3])) == 0;
930 }
931 
932 SECP256K1_INLINE static void secp256k1_scalar_mul_shift_var(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b, unsigned int shift) {
933  uint64_t l[8];
934  unsigned int shiftlimbs;
935  unsigned int shiftlow;
936  unsigned int shifthigh;
937  VERIFY_CHECK(shift >= 256);
938  secp256k1_scalar_mul_512(l, a, b);
939  shiftlimbs = shift >> 6;
940  shiftlow = shift & 0x3F;
941  shifthigh = 64 - shiftlow;
942  r->d[0] = shift < 512 ? (l[0 + shiftlimbs] >> shiftlow | (shift < 448 && shiftlow ? (l[1 + shiftlimbs] << shifthigh) : 0)) : 0;
943  r->d[1] = shift < 448 ? (l[1 + shiftlimbs] >> shiftlow | (shift < 384 && shiftlow ? (l[2 + shiftlimbs] << shifthigh) : 0)) : 0;
944  r->d[2] = shift < 384 ? (l[2 + shiftlimbs] >> shiftlow | (shift < 320 && shiftlow ? (l[3 + shiftlimbs] << shifthigh) : 0)) : 0;
945  r->d[3] = shift < 320 ? (l[3 + shiftlimbs] >> shiftlow) : 0;
946  secp256k1_scalar_cadd_bit(r, 0, (l[(shift - 1) >> 6] >> ((shift - 1) & 0x3f)) & 1);
947 }
948 
949 #endif /* SECP256K1_SCALAR_REPR_IMPL_H */
#define VERIFY_CHECK(cond)
Definition: util.h:67
#define SECP256K1_N_H_1
#define extract_fast(n)
Extract the lowest 64 bits of (c0,c1,c2) into n, and left shift the number 64 bits.
#define SECP256K1_N_2
#define sumadd(a)
Add a to the number defined by (c0,c1,c2).
#define SECP256K1_N_C_1
#define sumadd_fast(a)
Add a to the number defined by (c0,c1).
#define SECP256K1_INLINE
Definition: secp256k1.h:110
#define SECP256K1_N_1
#define SECP256K1_N_H_0
A scalar modulo the group order of the secp256k1 curve.
Definition: scalar_4x64.h:13
#define SECP256K1_N_C_2
#define SECP256K1_N_H_2
#define extract(n)
Extract the lowest 64 bits of (c0,c1,c2) into n, and left shift the number 64 bits.
#define muladd2(a, b)
Add 2*a*b to the number defined by (c0,c1,c2).
uint64_t d[4]
Definition: scalar_4x64.h:14
#define muladd_fast(a, b)
Add a*b to the number defined by (c0,c1).
#define muladd(a, b)
Add a*b to the number defined by (c0,c1,c2).
#define SECP256K1_N_H_3
#define SECP256K1_N_3
#define SECP256K1_N_0
#define SECP256K1_N_C_0