7 #ifndef SECP256K1_SCALAR_REPR_IMPL_H 8 #define SECP256K1_SCALAR_REPR_IMPL_H 11 #define SECP256K1_N_0 ((uint64_t)0xBFD25E8CD0364141ULL) 12 #define SECP256K1_N_1 ((uint64_t)0xBAAEDCE6AF48A03BULL) 13 #define SECP256K1_N_2 ((uint64_t)0xFFFFFFFFFFFFFFFEULL) 14 #define SECP256K1_N_3 ((uint64_t)0xFFFFFFFFFFFFFFFFULL) 17 #define SECP256K1_N_C_0 (~SECP256K1_N_0 + 1) 18 #define SECP256K1_N_C_1 (~SECP256K1_N_1) 19 #define SECP256K1_N_C_2 (1) 22 #define SECP256K1_N_H_0 ((uint64_t)0xDFE92F46681B20A0ULL) 23 #define SECP256K1_N_H_1 ((uint64_t)0x5D576E7357A4501DULL) 24 #define SECP256K1_N_H_2 ((uint64_t)0xFFFFFFFFFFFFFFFFULL) 25 #define SECP256K1_N_H_3 ((uint64_t)0x7FFFFFFFFFFFFFFFULL) 43 return (a->
d[offset >> 6] >> (offset & 0x3F)) & ((((uint64_t)1) << count) - 1);
49 if ((offset + count - 1) >> 6 == offset >> 6) {
50 return secp256k1_scalar_get_bits(a, offset, count);
53 return ((a->
d[offset >> 6] >> (offset & 0x3F)) | (a->
d[(offset >> 6) + 1] << (64 - (offset & 0x3F)))) & ((((uint64_t)1) << count) - 1);
73 r->
d[0] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
75 r->
d[1] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
77 r->
d[2] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
78 t += (uint64_t)r->
d[3];
79 r->
d[3] = t & 0xFFFFFFFFFFFFFFFFULL;
85 uint128_t t = (uint128_t)a->
d[0] + b->
d[0];
86 r->
d[0] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
87 t += (uint128_t)a->
d[1] + b->
d[1];
88 r->
d[1] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
89 t += (uint128_t)a->
d[2] + b->
d[2];
90 r->
d[2] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
91 t += (uint128_t)a->
d[3] + b->
d[3];
92 r->
d[3] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
93 overflow = t + secp256k1_scalar_check_overflow(r);
95 secp256k1_scalar_reduce(r, overflow);
99 static void secp256k1_scalar_cadd_bit(
secp256k1_scalar *r,
unsigned int bit,
int flag) {
102 bit += ((uint32_t) flag - 1) & 0x100;
103 t = (uint128_t)r->
d[0] + (((uint64_t)((bit >> 6) == 0)) << (bit & 0x3F));
104 r->
d[0] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
105 t += (uint128_t)r->
d[1] + (((uint64_t)((bit >> 6) == 1)) << (bit & 0x3F));
106 r->
d[1] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
107 t += (uint128_t)r->
d[2] + (((uint64_t)((bit >> 6) == 2)) << (bit & 0x3F));
108 r->
d[2] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
109 t += (uint128_t)r->
d[3] + (((uint64_t)((bit >> 6) == 3)) << (bit & 0x3F));
110 r->
d[3] = t & 0xFFFFFFFFFFFFFFFFULL;
117 static void secp256k1_scalar_set_b32(
secp256k1_scalar *r,
const unsigned char *b32,
int *overflow) {
119 r->
d[0] = (uint64_t)b32[31] | (uint64_t)b32[30] << 8 | (uint64_t)b32[29] << 16 | (uint64_t)b32[28] << 24 | (uint64_t)b32[27] << 32 | (uint64_t)b32[26] << 40 | (uint64_t)b32[25] << 48 | (uint64_t)b32[24] << 56;
120 r->
d[1] = (uint64_t)b32[23] | (uint64_t)b32[22] << 8 | (uint64_t)b32[21] << 16 | (uint64_t)b32[20] << 24 | (uint64_t)b32[19] << 32 | (uint64_t)b32[18] << 40 | (uint64_t)b32[17] << 48 | (uint64_t)b32[16] << 56;
121 r->
d[2] = (uint64_t)b32[15] | (uint64_t)b32[14] << 8 | (uint64_t)b32[13] << 16 | (uint64_t)b32[12] << 24 | (uint64_t)b32[11] << 32 | (uint64_t)b32[10] << 40 | (uint64_t)b32[9] << 48 | (uint64_t)b32[8] << 56;
122 r->
d[3] = (uint64_t)b32[7] | (uint64_t)b32[6] << 8 | (uint64_t)b32[5] << 16 | (uint64_t)b32[4] << 24 | (uint64_t)b32[3] << 32 | (uint64_t)b32[2] << 40 | (uint64_t)b32[1] << 48 | (uint64_t)b32[0] << 56;
123 over = secp256k1_scalar_reduce(r, secp256k1_scalar_check_overflow(r));
129 static void secp256k1_scalar_get_b32(
unsigned char *bin,
const secp256k1_scalar* a) {
130 bin[0] = a->
d[3] >> 56; bin[1] = a->
d[3] >> 48; bin[2] = a->
d[3] >> 40; bin[3] = a->
d[3] >> 32; bin[4] = a->
d[3] >> 24; bin[5] = a->
d[3] >> 16; bin[6] = a->
d[3] >> 8; bin[7] = a->
d[3];
131 bin[8] = a->
d[2] >> 56; bin[9] = a->
d[2] >> 48; bin[10] = a->
d[2] >> 40; bin[11] = a->
d[2] >> 32; bin[12] = a->
d[2] >> 24; bin[13] = a->
d[2] >> 16; bin[14] = a->
d[2] >> 8; bin[15] = a->
d[2];
132 bin[16] = a->
d[1] >> 56; bin[17] = a->
d[1] >> 48; bin[18] = a->
d[1] >> 40; bin[19] = a->
d[1] >> 32; bin[20] = a->
d[1] >> 24; bin[21] = a->
d[1] >> 16; bin[22] = a->
d[1] >> 8; bin[23] = a->
d[1];
133 bin[24] = a->
d[0] >> 56; bin[25] = a->
d[0] >> 48; bin[26] = a->
d[0] >> 40; bin[27] = a->
d[0] >> 32; bin[28] = a->
d[0] >> 24; bin[29] = a->
d[0] >> 16; bin[30] = a->
d[0] >> 8; bin[31] = a->
d[0];
137 return (a->
d[0] | a->
d[1] | a->
d[2] | a->
d[3]) == 0;
141 uint64_t nonzero = 0xFFFFFFFFFFFFFFFFULL * (secp256k1_scalar_is_zero(a) == 0);
143 r->
d[0] = t & nonzero; t >>= 64;
145 r->
d[1] = t & nonzero; t >>= 64;
147 r->
d[2] = t & nonzero; t >>= 64;
149 r->
d[3] = t & nonzero;
153 return ((a->
d[0] ^ 1) | a->
d[1] | a->
d[2] | a->
d[3]) == 0;
171 uint64_t mask = !flag - 1;
172 uint64_t nonzero = (secp256k1_scalar_is_zero(r) != 0) - 1;
173 uint128_t t = (uint128_t)(r->
d[0] ^ mask) + ((
SECP256K1_N_0 + 1) & mask);
174 r->
d[0] = t & nonzero; t >>= 64;
176 r->
d[1] = t & nonzero; t >>= 64;
178 r->
d[2] = t & nonzero; t >>= 64;
180 r->
d[3] = t & nonzero;
181 return 2 * (mask == 0) - 1;
187 #define muladd(a,b) { \ 190 uint128_t t = (uint128_t)a * b; \ 195 th += (c0 < tl) ? 1 : 0; \ 197 c2 += (c1 < th) ? 1 : 0; \ 198 VERIFY_CHECK((c1 >= th) || (c2 != 0)); \ 202 #define muladd_fast(a,b) { \ 205 uint128_t t = (uint128_t)a * b; \ 210 th += (c0 < tl) ? 1 : 0; \ 212 VERIFY_CHECK(c1 >= th); \ 216 #define muladd2(a,b) { \ 217 uint64_t tl, th, th2, tl2; \ 219 uint128_t t = (uint128_t)a * b; \ 224 c2 += (th2 < th) ? 1 : 0; \ 225 VERIFY_CHECK((th2 >= th) || (c2 != 0)); \ 227 th2 += (tl2 < tl) ? 1 : 0; \ 229 th2 += (c0 < tl2) ? 1 : 0; \ 230 c2 += (c0 < tl2) & (th2 == 0); \ 231 VERIFY_CHECK((c0 >= tl2) || (th2 != 0) || (c2 != 0)); \ 233 c2 += (c1 < th2) ? 1 : 0; \ 234 VERIFY_CHECK((c1 >= th2) || (c2 != 0)); \ 238 #define sumadd(a) { \ 241 over = (c0 < (a)) ? 1 : 0; \ 243 c2 += (c1 < over) ? 1 : 0; \ 247 #define sumadd_fast(a) { \ 249 c1 += (c0 < (a)) ? 1 : 0; \ 250 VERIFY_CHECK((c1 != 0) | (c0 >= (a))); \ 251 VERIFY_CHECK(c2 == 0); \ 255 #define extract(n) { \ 263 #define extract_fast(n) { \ 267 VERIFY_CHECK(c2 == 0); \ 270 static void secp256k1_scalar_reduce_512(
secp256k1_scalar *r,
const uint64_t *l) {
271 #ifdef USE_ASM_X86_64 273 uint64_t m0, m1, m2, m3, m4, m5, m6;
274 uint64_t p0, p1, p2, p3, p4;
277 __asm__ __volatile__(
279 "movq 32(%%rsi), %%r11\n" 280 "movq 40(%%rsi), %%r12\n" 281 "movq 48(%%rsi), %%r13\n" 282 "movq 56(%%rsi), %%r14\n" 284 "movq 0(%%rsi), %%r8\n" 286 "xorq %%r10, %%r10\n" 296 "addq 8(%%rsi), %%r9\n" 302 "adcq %%rdx, %%r10\n" 308 "adcq %%rdx, %%r10\n" 314 "addq 16(%%rsi), %%r10\n" 320 "addq %%rax, %%r10\n" 326 "addq %%rax, %%r10\n" 330 "addq %%r11, %%r10\n" 335 "xorq %%r10, %%r10\n" 337 "addq 24(%%rsi), %%r8\n" 363 "adcq %%rdx, %%r10\n" 372 "addq %%r14, %%r10\n" 378 :
"=g"(m0),
"=g"(m1),
"=g"(m2),
"=g"(m3),
"=g"(m4),
"=g"(m5),
"=g"(m6)
380 :
"rax",
"rdx",
"r8",
"r9",
"r10",
"r11",
"r12",
"r13",
"r14",
"cc");
383 __asm__ __volatile__(
391 "xorq %%r10, %%r10\n" 407 "adcq %%rdx, %%r10\n" 413 "adcq %%rdx, %%r10\n" 425 "addq %%rax, %%r10\n" 431 "addq %%rax, %%r10\n" 435 "addq %%r11, %%r10\n" 457 :
"=&g"(p0),
"=&g"(p1),
"=&g"(p2),
"=g"(p3),
"=g"(p4)
459 :
"rax",
"rdx",
"r8",
"r9",
"r10",
"r11",
"r12",
"r13",
"cc");
462 __asm__ __volatile__(
472 "movq %%rax, 0(%q6)\n" 485 "movq %%r8, 8(%q6)\n" 494 "movq %%r9, 16(%q6)\n" 500 "movq %%r8, 24(%q6)\n" 505 :
"rax",
"rdx",
"r8",
"r9",
"r10",
"cc",
"memory");
509 uint64_t n0 = l[4], n1 = l[5], n2 = l[6], n3 = l[7];
510 uint64_t m0, m1, m2, m3, m4, m5;
512 uint64_t p0, p1, p2, p3;
517 c0 = l[0]; c1 = 0; c2 = 0;
544 c0 = m0; c1 = 0; c2 = 0;
566 r->
d[0] = c & 0xFFFFFFFFFFFFFFFFULL; c >>= 64;
568 r->
d[1] = c & 0xFFFFFFFFFFFFFFFFULL; c >>= 64;
569 c += p2 + (uint128_t)p4;
570 r->
d[2] = c & 0xFFFFFFFFFFFFFFFFULL; c >>= 64;
572 r->
d[3] = c & 0xFFFFFFFFFFFFFFFFULL; c >>= 64;
576 secp256k1_scalar_reduce(r, c + secp256k1_scalar_check_overflow(r));
580 #ifdef USE_ASM_X86_64 581 const uint64_t *pb = b->
d;
582 __asm__ __volatile__(
584 "movq 0(%%rdi), %%r15\n" 585 "movq 8(%%rdi), %%rbx\n" 586 "movq 16(%%rdi), %%rcx\n" 587 "movq 0(%%rdx), %%r11\n" 588 "movq 8(%%rdx), %%r12\n" 589 "movq 16(%%rdx), %%r13\n" 590 "movq 24(%%rdx), %%r14\n" 592 "movq %%r15, %%rax\n" 595 "movq %%rax, 0(%%rsi)\n" 599 "xorq %%r10, %%r10\n" 601 "movq %%r15, %%rax\n" 607 "movq %%rbx, %%rax\n" 613 "movq %%r8, 8(%%rsi)\n" 616 "movq %%r15, %%rax\n" 619 "adcq %%rdx, %%r10\n" 622 "movq %%rbx, %%rax\n" 625 "adcq %%rdx, %%r10\n" 628 "movq %%rcx, %%rax\n" 631 "adcq %%rdx, %%r10\n" 634 "movq %%r9, 16(%%rsi)\n" 637 "movq %%r15, %%rax\n" 639 "addq %%rax, %%r10\n" 643 "movq 24(%%rdi), %%r15\n" 645 "movq %%rbx, %%rax\n" 647 "addq %%rax, %%r10\n" 651 "movq %%rcx, %%rax\n" 653 "addq %%rax, %%r10\n" 657 "movq %%r15, %%rax\n" 659 "addq %%rax, %%r10\n" 663 "movq %%r10, 24(%%rsi)\n" 664 "xorq %%r10, %%r10\n" 666 "movq %%rbx, %%rax\n" 672 "movq %%rcx, %%rax\n" 678 "movq %%r15, %%rax\n" 684 "movq %%r8, 32(%%rsi)\n" 687 "movq %%rcx, %%rax\n" 690 "adcq %%rdx, %%r10\n" 693 "movq %%r15, %%rax\n" 696 "adcq %%rdx, %%r10\n" 699 "movq %%r9, 40(%%rsi)\n" 701 "movq %%r15, %%rax\n" 703 "addq %%rax, %%r10\n" 706 "movq %%r10, 48(%%rsi)\n" 708 "movq %%r8, 56(%%rsi)\n" 711 :
"rax",
"rbx",
"rcx",
"r8",
"r9",
"r10",
"r11",
"r12",
"r13",
"r14",
"r15",
"cc",
"memory");
714 uint64_t c0 = 0, c1 = 0;
746 static void secp256k1_scalar_sqr_512(uint64_t l[8],
const secp256k1_scalar *a) {
747 #ifdef USE_ASM_X86_64 748 __asm__ __volatile__(
750 "movq 0(%%rdi), %%r11\n" 751 "movq 8(%%rdi), %%r12\n" 752 "movq 16(%%rdi), %%r13\n" 753 "movq 24(%%rdi), %%r14\n" 755 "movq %%r11, %%rax\n" 758 "movq %%rax, 0(%%rsi)\n" 762 "xorq %%r10, %%r10\n" 764 "movq %%r11, %%rax\n" 773 "movq %%r8, 8(%%rsi)\n" 776 "movq %%r11, %%rax\n" 779 "adcq %%rdx, %%r10\n" 782 "adcq %%rdx, %%r10\n" 785 "movq %%r12, %%rax\n" 788 "adcq %%rdx, %%r10\n" 791 "movq %%r9, 16(%%rsi)\n" 794 "movq %%r11, %%rax\n" 796 "addq %%rax, %%r10\n" 799 "addq %%rax, %%r10\n" 803 "movq %%r12, %%rax\n" 805 "addq %%rax, %%r10\n" 808 "addq %%rax, %%r10\n" 812 "movq %%r10, 24(%%rsi)\n" 813 "xorq %%r10, %%r10\n" 815 "movq %%r12, %%rax\n" 824 "movq %%r13, %%rax\n" 830 "movq %%r8, 32(%%rsi)\n" 833 "movq %%r13, %%rax\n" 836 "adcq %%rdx, %%r10\n" 839 "adcq %%rdx, %%r10\n" 842 "movq %%r9, 40(%%rsi)\n" 844 "movq %%r14, %%rax\n" 846 "addq %%rax, %%r10\n" 849 "movq %%r10, 48(%%rsi)\n" 851 "movq %%r8, 56(%%rsi)\n" 854 :
"rax",
"rdx",
"r8",
"r9",
"r10",
"r11",
"r12",
"r13",
"r14",
"cc",
"memory");
857 uint64_t c0 = 0, c1 = 0;
893 secp256k1_scalar_mul_512(l, a, b);
894 secp256k1_scalar_reduce_512(r, l);
901 ret = r->
d[0] & ((1 << n) - 1);
902 r->
d[0] = (r->
d[0] >> n) + (r->
d[1] << (64 - n));
903 r->
d[1] = (r->
d[1] >> n) + (r->
d[2] << (64 - n));
904 r->
d[2] = (r->
d[2] >> n) + (r->
d[3] << (64 - n));
905 r->
d[3] = (r->
d[3] >> n);
911 secp256k1_scalar_sqr_512(l, a);
912 secp256k1_scalar_reduce_512(r, l);
915 #ifdef USE_ENDOMORPHISM 929 return ((a->
d[0] ^ b->
d[0]) | (a->
d[1] ^ b->
d[1]) | (a->
d[2] ^ b->
d[2]) | (a->
d[3] ^ b->
d[3])) == 0;
934 unsigned int shiftlimbs;
935 unsigned int shiftlow;
936 unsigned int shifthigh;
938 secp256k1_scalar_mul_512(l, a, b);
939 shiftlimbs = shift >> 6;
940 shiftlow = shift & 0x3F;
941 shifthigh = 64 - shiftlow;
942 r->
d[0] = shift < 512 ? (l[0 + shiftlimbs] >> shiftlow | (shift < 448 && shiftlow ? (l[1 + shiftlimbs] << shifthigh) : 0)) : 0;
943 r->
d[1] = shift < 448 ? (l[1 + shiftlimbs] >> shiftlow | (shift < 384 && shiftlow ? (l[2 + shiftlimbs] << shifthigh) : 0)) : 0;
944 r->
d[2] = shift < 384 ? (l[2 + shiftlimbs] >> shiftlow | (shift < 320 && shiftlow ? (l[3 + shiftlimbs] << shifthigh) : 0)) : 0;
945 r->
d[3] = shift < 320 ? (l[3 + shiftlimbs] >> shiftlow) : 0;
946 secp256k1_scalar_cadd_bit(r, 0, (l[(shift - 1) >> 6] >> ((shift - 1) & 0x3f)) & 1);
#define VERIFY_CHECK(cond)
#define extract_fast(n)
Extract the lowest 64 bits of (c0,c1,c2) into n, and left shift the number 64 bits.
#define sumadd(a)
Add a to the number defined by (c0,c1,c2).
#define sumadd_fast(a)
Add a to the number defined by (c0,c1).
A scalar modulo the group order of the secp256k1 curve.
#define extract(n)
Extract the lowest 64 bits of (c0,c1,c2) into n, and left shift the number 64 bits.
#define muladd2(a, b)
Add 2*a*b to the number defined by (c0,c1,c2).
#define muladd_fast(a, b)
Add a*b to the number defined by (c0,c1).
#define muladd(a, b)
Add a*b to the number defined by (c0,c1,c2).