Raven Core  3.0.0
P2P Digital Currency
tests_exhaustive.c
Go to the documentation of this file.
1 /***********************************************************************
2  * Copyright (c) 2016 Andrew Poelstra *
3  * Distributed under the MIT software license, see the accompanying *
4  * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
5  **********************************************************************/
6 
7 #if defined HAVE_CONFIG_H
8 #include "libsecp256k1-config.h"
9 #endif
10 
11 #include <stdio.h>
12 #include <stdlib.h>
13 
14 #include <time.h>
15 
16 #undef USE_ECMULT_STATIC_PRECOMPUTATION
17 
18 #ifndef EXHAUSTIVE_TEST_ORDER
19 /* see group_impl.h for allowable values */
20 #define EXHAUSTIVE_TEST_ORDER 13
21 #define EXHAUSTIVE_TEST_LAMBDA 9 /* cube root of 1 mod 13 */
22 #endif
23 
24 #include "include/secp256k1.h"
25 #include "group.h"
26 #include "secp256k1.c"
27 #include "testrand_impl.h"
28 
29 #ifdef ENABLE_MODULE_RECOVERY
32 #endif
33 
35 void ge_equals_ge(const secp256k1_ge *a, const secp256k1_ge *b) {
36  CHECK(a->infinity == b->infinity);
37  if (a->infinity) {
38  return;
39  }
40  CHECK(secp256k1_fe_equal_var(&a->x, &b->x));
41  CHECK(secp256k1_fe_equal_var(&a->y, &b->y));
42 }
43 
44 void ge_equals_gej(const secp256k1_ge *a, const secp256k1_gej *b) {
45  secp256k1_fe z2s;
46  secp256k1_fe u1, u2, s1, s2;
47  CHECK(a->infinity == b->infinity);
48  if (a->infinity) {
49  return;
50  }
51  /* Check a.x * b.z^2 == b.x && a.y * b.z^3 == b.y, to avoid inverses. */
52  secp256k1_fe_sqr(&z2s, &b->z);
53  secp256k1_fe_mul(&u1, &a->x, &z2s);
54  u2 = b->x; secp256k1_fe_normalize_weak(&u2);
55  secp256k1_fe_mul(&s1, &a->y, &z2s); secp256k1_fe_mul(&s1, &s1, &b->z);
56  s2 = b->y; secp256k1_fe_normalize_weak(&s2);
57  CHECK(secp256k1_fe_equal_var(&u1, &u2));
58  CHECK(secp256k1_fe_equal_var(&s1, &s2));
59 }
60 
62  unsigned char bin[32];
63  do {
64  secp256k1_rand256(bin);
65  if (secp256k1_fe_set_b32(x, bin)) {
66  return;
67  }
68  } while(1);
69 }
72 int secp256k1_nonce_function_smallint(unsigned char *nonce32, const unsigned char *msg32,
73  const unsigned char *key32, const unsigned char *algo16,
74  void *data, unsigned int attempt) {
76  int *idata = data;
77  (void)msg32;
78  (void)key32;
79  (void)algo16;
80  /* Some nonces cannot be used because they'd cause s and/or r to be zero.
81  * The signing function has retry logic here that just re-calls the nonce
82  * function with an increased `attempt`. So if attempt > 0 this means we
83  * need to change the nonce to avoid an infinite loop. */
84  if (attempt > 0) {
85  *idata = (*idata + 1) % EXHAUSTIVE_TEST_ORDER;
86  }
87  secp256k1_scalar_set_int(&s, *idata);
88  secp256k1_scalar_get_b32(nonce32, &s);
89  return 1;
90 }
91 
92 #ifdef USE_ENDOMORPHISM
93 void test_exhaustive_endomorphism(const secp256k1_ge *group, int order) {
94  int i;
95  for (i = 0; i < order; i++) {
96  secp256k1_ge res;
97  secp256k1_ge_mul_lambda(&res, &group[i]);
99  }
100 }
101 #endif
102 
103 void test_exhaustive_addition(const secp256k1_ge *group, const secp256k1_gej *groupj, int order) {
104  int i, j;
105 
106  /* Sanity-check (and check infinity functions) */
107  CHECK(secp256k1_ge_is_infinity(&group[0]));
108  CHECK(secp256k1_gej_is_infinity(&groupj[0]));
109  for (i = 1; i < order; i++) {
110  CHECK(!secp256k1_ge_is_infinity(&group[i]));
111  CHECK(!secp256k1_gej_is_infinity(&groupj[i]));
112  }
113 
114  /* Check all addition formulae */
115  for (j = 0; j < order; j++) {
116  secp256k1_fe fe_inv;
117  secp256k1_fe_inv(&fe_inv, &groupj[j].z);
118  for (i = 0; i < order; i++) {
119  secp256k1_ge zless_gej;
120  secp256k1_gej tmp;
121  /* add_var */
122  secp256k1_gej_add_var(&tmp, &groupj[i], &groupj[j], NULL);
123  ge_equals_gej(&group[(i + j) % order], &tmp);
124  /* add_ge */
125  if (j > 0) {
126  secp256k1_gej_add_ge(&tmp, &groupj[i], &group[j]);
127  ge_equals_gej(&group[(i + j) % order], &tmp);
128  }
129  /* add_ge_var */
130  secp256k1_gej_add_ge_var(&tmp, &groupj[i], &group[j], NULL);
131  ge_equals_gej(&group[(i + j) % order], &tmp);
132  /* add_zinv_var */
133  zless_gej.infinity = groupj[j].infinity;
134  zless_gej.x = groupj[j].x;
135  zless_gej.y = groupj[j].y;
136  secp256k1_gej_add_zinv_var(&tmp, &groupj[i], &zless_gej, &fe_inv);
137  ge_equals_gej(&group[(i + j) % order], &tmp);
138  }
139  }
140 
141  /* Check doubling */
142  for (i = 0; i < order; i++) {
143  secp256k1_gej tmp;
144  if (i > 0) {
145  secp256k1_gej_double_nonzero(&tmp, &groupj[i], NULL);
146  ge_equals_gej(&group[(2 * i) % order], &tmp);
147  }
148  secp256k1_gej_double_var(&tmp, &groupj[i], NULL);
149  ge_equals_gej(&group[(2 * i) % order], &tmp);
150  }
151 
152  /* Check negation */
153  for (i = 1; i < order; i++) {
154  secp256k1_ge tmp;
155  secp256k1_gej tmpj;
156  secp256k1_ge_neg(&tmp, &group[i]);
157  ge_equals_ge(&group[order - i], &tmp);
158  secp256k1_gej_neg(&tmpj, &groupj[i]);
159  ge_equals_gej(&group[order - i], &tmpj);
160  }
161 }
162 
163 void test_exhaustive_ecmult(const secp256k1_context *ctx, const secp256k1_ge *group, const secp256k1_gej *groupj, int order) {
164  int i, j, r_log;
165  for (r_log = 1; r_log < order; r_log++) {
166  for (j = 0; j < order; j++) {
167  for (i = 0; i < order; i++) {
168  secp256k1_gej tmp;
169  secp256k1_scalar na, ng;
170  secp256k1_scalar_set_int(&na, i);
171  secp256k1_scalar_set_int(&ng, j);
172 
173  secp256k1_ecmult(&ctx->ecmult_ctx, &tmp, &groupj[r_log], &na, &ng);
174  ge_equals_gej(&group[(i * r_log + j) % order], &tmp);
175 
176  if (i > 0) {
177  secp256k1_ecmult_const(&tmp, &group[i], &ng);
178  ge_equals_gej(&group[(i * j) % order], &tmp);
179  }
180  }
181  }
182  }
183 }
184 
185 void r_from_k(secp256k1_scalar *r, const secp256k1_ge *group, int k) {
186  secp256k1_fe x;
187  unsigned char x_bin[32];
189  x = group[k].x;
190  secp256k1_fe_normalize(&x);
191  secp256k1_fe_get_b32(x_bin, &x);
192  secp256k1_scalar_set_b32(r, x_bin, NULL);
193 }
194 
195 void test_exhaustive_verify(const secp256k1_context *ctx, const secp256k1_ge *group, int order) {
196  int s, r, msg, key;
197  for (s = 1; s < order; s++) {
198  for (r = 1; r < order; r++) {
199  for (msg = 1; msg < order; msg++) {
200  for (key = 1; key < order; key++) {
201  secp256k1_ge nonconst_ge;
203  secp256k1_pubkey pk;
204  secp256k1_scalar sk_s, msg_s, r_s, s_s;
205  secp256k1_scalar s_times_k_s, msg_plus_r_times_sk_s;
206  int k, should_verify;
207  unsigned char msg32[32];
208 
209  secp256k1_scalar_set_int(&s_s, s);
210  secp256k1_scalar_set_int(&r_s, r);
211  secp256k1_scalar_set_int(&msg_s, msg);
212  secp256k1_scalar_set_int(&sk_s, key);
213 
214  /* Verify by hand */
215  /* Run through every k value that gives us this r and check that *one* works.
216  * Note there could be none, there could be multiple, ECDSA is weird. */
217  should_verify = 0;
218  for (k = 0; k < order; k++) {
219  secp256k1_scalar check_x_s;
220  r_from_k(&check_x_s, group, k);
221  if (r_s == check_x_s) {
222  secp256k1_scalar_set_int(&s_times_k_s, k);
223  secp256k1_scalar_mul(&s_times_k_s, &s_times_k_s, &s_s);
224  secp256k1_scalar_mul(&msg_plus_r_times_sk_s, &r_s, &sk_s);
225  secp256k1_scalar_add(&msg_plus_r_times_sk_s, &msg_plus_r_times_sk_s, &msg_s);
226  should_verify |= secp256k1_scalar_eq(&s_times_k_s, &msg_plus_r_times_sk_s);
227  }
228  }
229  /* nb we have a "high s" rule */
230  should_verify &= !secp256k1_scalar_is_high(&s_s);
231 
232  /* Verify by calling verify */
233  secp256k1_ecdsa_signature_save(&sig, &r_s, &s_s);
234  memcpy(&nonconst_ge, &group[sk_s], sizeof(nonconst_ge));
235  secp256k1_pubkey_save(&pk, &nonconst_ge);
236  secp256k1_scalar_get_b32(msg32, &msg_s);
237  CHECK(should_verify ==
238  secp256k1_ecdsa_verify(ctx, &sig, msg32, &pk));
239  }
240  }
241  }
242  }
243 }
244 
245 void test_exhaustive_sign(const secp256k1_context *ctx, const secp256k1_ge *group, int order) {
246  int i, j, k;
247 
248  /* Loop */
249  for (i = 1; i < order; i++) { /* message */
250  for (j = 1; j < order; j++) { /* key */
251  for (k = 1; k < order; k++) { /* nonce */
252  const int starting_k = k;
254  secp256k1_scalar sk, msg, r, s, expected_r;
255  unsigned char sk32[32], msg32[32];
256  secp256k1_scalar_set_int(&msg, i);
257  secp256k1_scalar_set_int(&sk, j);
258  secp256k1_scalar_get_b32(sk32, &sk);
259  secp256k1_scalar_get_b32(msg32, &msg);
260 
261  secp256k1_ecdsa_sign(ctx, &sig, msg32, sk32, secp256k1_nonce_function_smallint, &k);
262 
263  secp256k1_ecdsa_signature_load(ctx, &r, &s, &sig);
264  /* Note that we compute expected_r *after* signing -- this is important
265  * because our nonce-computing function function might change k during
266  * signing. */
267  r_from_k(&expected_r, group, k);
268  CHECK(r == expected_r);
269  CHECK((k * s) % order == (i + r * j) % order ||
270  (k * (EXHAUSTIVE_TEST_ORDER - s)) % order == (i + r * j) % order);
271 
272  /* Overflow means we've tried every possible nonce */
273  if (k < starting_k) {
274  break;
275  }
276  }
277  }
278  }
279 
280  /* We would like to verify zero-knowledge here by counting how often every
281  * possible (s, r) tuple appears, but because the group order is larger
282  * than the field order, when coercing the x-values to scalar values, some
283  * appear more often than others, so we are actually not zero-knowledge.
284  * (This effect also appears in the real code, but the difference is on the
285  * order of 1/2^128th the field order, so the deviation is not useful to a
286  * computationally bounded attacker.)
287  */
288 }
289 
290 #ifdef ENABLE_MODULE_RECOVERY
291 void test_exhaustive_recovery_sign(const secp256k1_context *ctx, const secp256k1_ge *group, int order) {
292  int i, j, k;
293 
294  /* Loop */
295  for (i = 1; i < order; i++) { /* message */
296  for (j = 1; j < order; j++) { /* key */
297  for (k = 1; k < order; k++) { /* nonce */
298  const int starting_k = k;
299  secp256k1_fe r_dot_y_normalized;
302  secp256k1_scalar sk, msg, r, s, expected_r;
303  unsigned char sk32[32], msg32[32];
304  int expected_recid;
305  int recid;
306  secp256k1_scalar_set_int(&msg, i);
307  secp256k1_scalar_set_int(&sk, j);
308  secp256k1_scalar_get_b32(sk32, &sk);
309  secp256k1_scalar_get_b32(msg32, &msg);
310 
312 
313  /* Check directly */
314  secp256k1_ecdsa_recoverable_signature_load(ctx, &r, &s, &recid, &rsig);
315  r_from_k(&expected_r, group, k);
316  CHECK(r == expected_r);
317  CHECK((k * s) % order == (i + r * j) % order ||
318  (k * (EXHAUSTIVE_TEST_ORDER - s)) % order == (i + r * j) % order);
319  /* In computing the recid, there is an overflow condition that is disabled in
320  * scalar_low_impl.h `secp256k1_scalar_set_b32` because almost every r.y value
321  * will exceed the group order, and our signing code always holds out for r
322  * values that don't overflow, so with a proper overflow check the tests would
323  * loop indefinitely. */
324  r_dot_y_normalized = group[k].y;
325  secp256k1_fe_normalize(&r_dot_y_normalized);
326  /* Also the recovery id is flipped depending if we hit the low-s branch */
327  if ((k * s) % order == (i + r * j) % order) {
328  expected_recid = secp256k1_fe_is_odd(&r_dot_y_normalized) ? 1 : 0;
329  } else {
330  expected_recid = secp256k1_fe_is_odd(&r_dot_y_normalized) ? 0 : 1;
331  }
332  CHECK(recid == expected_recid);
333 
334  /* Convert to a standard sig then check */
336  secp256k1_ecdsa_signature_load(ctx, &r, &s, &sig);
337  /* Note that we compute expected_r *after* signing -- this is important
338  * because our nonce-computing function function might change k during
339  * signing. */
340  r_from_k(&expected_r, group, k);
341  CHECK(r == expected_r);
342  CHECK((k * s) % order == (i + r * j) % order ||
343  (k * (EXHAUSTIVE_TEST_ORDER - s)) % order == (i + r * j) % order);
344 
345  /* Overflow means we've tried every possible nonce */
346  if (k < starting_k) {
347  break;
348  }
349  }
350  }
351  }
352 }
353 
354 void test_exhaustive_recovery_verify(const secp256k1_context *ctx, const secp256k1_ge *group, int order) {
355  /* This is essentially a copy of test_exhaustive_verify, with recovery added */
356  int s, r, msg, key;
357  for (s = 1; s < order; s++) {
358  for (r = 1; r < order; r++) {
359  for (msg = 1; msg < order; msg++) {
360  for (key = 1; key < order; key++) {
361  secp256k1_ge nonconst_ge;
364  secp256k1_pubkey pk;
365  secp256k1_scalar sk_s, msg_s, r_s, s_s;
366  secp256k1_scalar s_times_k_s, msg_plus_r_times_sk_s;
367  int recid = 0;
368  int k, should_verify;
369  unsigned char msg32[32];
370 
371  secp256k1_scalar_set_int(&s_s, s);
372  secp256k1_scalar_set_int(&r_s, r);
373  secp256k1_scalar_set_int(&msg_s, msg);
374  secp256k1_scalar_set_int(&sk_s, key);
375  secp256k1_scalar_get_b32(msg32, &msg_s);
376 
377  /* Verify by hand */
378  /* Run through every k value that gives us this r and check that *one* works.
379  * Note there could be none, there could be multiple, ECDSA is weird. */
380  should_verify = 0;
381  for (k = 0; k < order; k++) {
382  secp256k1_scalar check_x_s;
383  r_from_k(&check_x_s, group, k);
384  if (r_s == check_x_s) {
385  secp256k1_scalar_set_int(&s_times_k_s, k);
386  secp256k1_scalar_mul(&s_times_k_s, &s_times_k_s, &s_s);
387  secp256k1_scalar_mul(&msg_plus_r_times_sk_s, &r_s, &sk_s);
388  secp256k1_scalar_add(&msg_plus_r_times_sk_s, &msg_plus_r_times_sk_s, &msg_s);
389  should_verify |= secp256k1_scalar_eq(&s_times_k_s, &msg_plus_r_times_sk_s);
390  }
391  }
392  /* nb we have a "high s" rule */
393  should_verify &= !secp256k1_scalar_is_high(&s_s);
394 
395  /* We would like to try recovering the pubkey and checking that it matches,
396  * but pubkey recovery is impossible in the exhaustive tests (the reason
397  * being that there are 12 nonzero r values, 12 nonzero points, and no
398  * overlap between the sets, so there are no valid signatures). */
399 
400  /* Verify by converting to a standard signature and calling verify */
401  secp256k1_ecdsa_recoverable_signature_save(&rsig, &r_s, &s_s, recid);
403  memcpy(&nonconst_ge, &group[sk_s], sizeof(nonconst_ge));
404  secp256k1_pubkey_save(&pk, &nonconst_ge);
405  CHECK(should_verify ==
406  secp256k1_ecdsa_verify(ctx, &sig, msg32, &pk));
407  }
408  }
409  }
410  }
411 }
412 #endif
413 
414 int main(void) {
415  int i;
418 
419  /* Build context */
421 
422  /* TODO set z = 1, then do num_tests runs with random z values */
423 
424  /* Generate the entire group */
425  secp256k1_gej_set_infinity(&groupj[0]);
426  secp256k1_ge_set_gej(&group[0], &groupj[0]);
427  for (i = 1; i < EXHAUSTIVE_TEST_ORDER; i++) {
428  /* Set a different random z-value for each Jacobian point */
429  secp256k1_fe z;
430  random_fe(&z);
431 
432  secp256k1_gej_add_ge(&groupj[i], &groupj[i - 1], &secp256k1_ge_const_g);
433  secp256k1_ge_set_gej(&group[i], &groupj[i]);
434  secp256k1_gej_rescale(&groupj[i], &z);
435 
436  /* Verify against ecmult_gen */
437  {
438  secp256k1_scalar scalar_i;
439  secp256k1_gej generatedj;
440  secp256k1_ge generated;
441 
442  secp256k1_scalar_set_int(&scalar_i, i);
443  secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &generatedj, &scalar_i);
444  secp256k1_ge_set_gej(&generated, &generatedj);
445 
446  CHECK(group[i].infinity == 0);
447  CHECK(generated.infinity == 0);
448  CHECK(secp256k1_fe_equal_var(&generated.x, &group[i].x));
449  CHECK(secp256k1_fe_equal_var(&generated.y, &group[i].y));
450  }
451  }
452 
453  /* Run the tests */
454 #ifdef USE_ENDOMORPHISM
455  test_exhaustive_endomorphism(group, EXHAUSTIVE_TEST_ORDER);
456 #endif
457  test_exhaustive_addition(group, groupj, EXHAUSTIVE_TEST_ORDER);
458  test_exhaustive_ecmult(ctx, group, groupj, EXHAUSTIVE_TEST_ORDER);
459  test_exhaustive_sign(ctx, group, EXHAUSTIVE_TEST_ORDER);
460  test_exhaustive_verify(ctx, group, EXHAUSTIVE_TEST_ORDER);
461 
462 #ifdef ENABLE_MODULE_RECOVERY
463  test_exhaustive_recovery_sign(ctx, group, EXHAUSTIVE_TEST_ORDER);
464  test_exhaustive_recovery_verify(ctx, group, EXHAUSTIVE_TEST_ORDER);
465 #endif
466 
468  return 0;
469 }
470 
#define s2
Definition: sph_hamsi.c:214
secp256k1_fe x
Definition: group.h:25
void ge_equals_ge(const secp256k1_ge *a, const secp256k1_ge *b)
stolen from tests.c
Opaque data structured that holds a parsed ECDSA signature, supporting pubkey recovery.
SECP256K1_API int secp256k1_ecdsa_recoverable_signature_convert(const secp256k1_context *ctx, secp256k1_ecdsa_signature *sig, const secp256k1_ecdsa_recoverable_signature *sigin) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3)
Convert a recoverable signature into a normal signature.
Definition: main_impl.h:74
A group element of the secp256k1 curve, in jacobian coordinates.
Definition: group.h:24
#define SECP256K1_CONTEXT_SIGN
Definition: secp256k1.h:155
void test_exhaustive_addition(const secp256k1_ge *group, const secp256k1_gej *groupj, int order)
SECP256K1_API void secp256k1_context_destroy(secp256k1_context *ctx)
Destroy a secp256k1 context object.
Definition: secp256k1.c:92
#define EXHAUSTIVE_TEST_LAMBDA
secp256k1_ecmult_gen_context ecmult_gen_ctx
Definition: secp256k1.c:53
SECP256K1_API int secp256k1_ecdsa_sign(const secp256k1_context *ctx, secp256k1_ecdsa_signature *sig, const unsigned char *msg32, const unsigned char *seckey, secp256k1_nonce_function noncefp, const void *ndata) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4)
Create an ECDSA signature.
Definition: secp256k1.c:345
SECP256K1_API int secp256k1_ecdsa_sign_recoverable(const secp256k1_context *ctx, secp256k1_ecdsa_recoverable_signature *sig, const unsigned char *msg32, const unsigned char *seckey, secp256k1_nonce_function noncefp, const void *ndata) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4)
Create a recoverable ECDSA signature.
Definition: main_impl.h:123
int infinity
Definition: group.h:28
void r_from_k(secp256k1_scalar *r, const secp256k1_ge *group, int k)
void test_exhaustive_verify(const secp256k1_context *ctx, const secp256k1_ge *group, int order)
void test_exhaustive_ecmult(const secp256k1_context *ctx, const secp256k1_ge *group, const secp256k1_gej *groupj, int order)
int main(void)
secp256k1_ecmult_context ecmult_ctx
Definition: secp256k1.c:52
A group element of the secp256k1 curve, in affine coordinates.
Definition: group.h:14
Opaque data structured that holds a parsed ECDSA signature.
Definition: secp256k1.h:66
secp256k1_fe x
Definition: group.h:15
#define CHECK(cond)
Definition: util.h:52
A scalar modulo the group order of the secp256k1 curve.
Definition: scalar_4x64.h:13
int infinity
Definition: group.h:17
#define s1(x)
Definition: sha2.c:57
#define SECP256K1_CONTEXT_VERIFY
Flags to pass to secp256k1_context_create.
Definition: secp256k1.h:154
#define EXHAUSTIVE_TEST_ORDER
secp256k1_fe z
Definition: group.h:27
void * memcpy(void *a, const void *b, size_t c)
void random_fe(secp256k1_fe *x)
secp256k1_fe y
Definition: group.h:26
int secp256k1_nonce_function_smallint(unsigned char *nonce32, const unsigned char *msg32, const unsigned char *key32, const unsigned char *algo16, void *data, unsigned int attempt)
END stolen from tests.c.
void ge_equals_gej(const secp256k1_ge *a, const secp256k1_gej *b)
secp256k1_fe y
Definition: group.h:16
SECP256K1_API secp256k1_context * secp256k1_context_create(unsigned int flags) SECP256K1_WARN_UNUSED_RESULT
Create a secp256k1 context object.
Definition: secp256k1.c:58
void test_exhaustive_sign(const secp256k1_context *ctx, const secp256k1_ge *group, int order)
Opaque data structure that holds a parsed and valid public key.
Definition: secp256k1.h:53
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ecdsa_verify(const secp256k1_context *ctx, const secp256k1_ecdsa_signature *sig, const unsigned char *msg32, const secp256k1_pubkey *pubkey) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4)
Verify an ECDSA signature.
Definition: secp256k1.c:293